1. Выносим x за скобки, запишем ввиде степени: (x^2-x)(x+5)=(x+3)^2 * (x-2) Перемножим скобки и вынесем (x+3)^2 за скобки x^3+5x^2-x^2-5x = (x+3)^2 * x - (x+3)^2 * 2 Запишем выражение в развернутом ввиде при формулы сокращенного умножения (a+b)^2: x^3 + 5x^2 -x^2 -5x = ( x^2 +6x +9 )x - (x+3)^2 * 2 Выносим x за скобки: x^3 + 5x^2 -x^2 -5x = x^3 +6x^2 +9x - (x+3)^2 * 2 разложим по формуле сокращенного (a+b)^2, а так же сократим равные члены с разных сторон уравнения: 5x^2 - x^2 -5x = 6x^2 + 9x - ( x^2 +6x +9 ) * 2 Приводим подобные и вычисляем, знак каждого члена скобок меняем на противоположный, т.к. перед скобками стоит "-" : 4x^2 - 5x = 6x^2 + 9x + ( -x^2 -6x -9) * 2 Выносим 2 за скобки: 4x^2 -5x = 6x^2 +9x -2x^2 - 12x - 18 Вычисляем подобные члены: 4x^2 - 5x = 4x^2 -3x - 18 Сокращаем равные члены обеих частей уравнения: -5x = -3x - 18 Перемещаем иксы в левую часть и меняем знак: -5x +3x = -18 Приводим подобные и вычисляем: -2x = -18 Делим обе части на -2 и получаем ответ: x = 9
a1 = 96.4
d = -4.6
an -a1 + d(n-1)> 0
n = 21