Дано:
Найти - остаток от деления
Решение.
1) Для начала разложим многочлен на множители, для этого решим уравнение:
2) Так как данный многочлен делится на
с остатком, то представим его в виде
где
- неполное частное;
- искомый остаток.
Степень остатка деления многочлена на многочлен должна быть меньше степени делителя. В данном случае делитель - многочлен второй степени, так что остаток - многочлен первой степени, который имеет вид:
3) Подставим в равенство первый корень
и получим:
Вычислим .
Так как , то
=>
4) Аналогично решаем и со вторым корнем .
5) Подставим в полученное уравнение:
6)
- искомый остаток.
ответ:
sin(p/2-a)cos(p+a)/ctg(p+a)tg(3p/2-a) =
= [cosa * (- cosa)] / [ctga * ctga] = - cos²a / (cos²a/sin²a) = - sin²a