М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
daniilbesperst
daniilbesperst
02.04.2023 13:06 •  Алгебра

Решите уравнение х в квадрате + 3х = 8/ х в квадрате + 3х -2

👇
Ответ:
Даниил555777
Даниил555777
02.04.2023

x^2 + 3x = (8/x)^2 + 3x - 2

 

так? или

 

x^2 + 3x = 8/x^2 + 3x - 2

 

или x^2 + 3x = 8/ (x^2 + 3x - 2)

4,5(13 оценок)
Ответ:
ударник52
ударник52
02.04.2023

поясни задание. первое кв. уравнение делить на второе или как?

4,7(8 оценок)
Открыть все ответы
Ответ:
JustSuperDasha
JustSuperDasha
02.04.2023
Приведем к общему знаменателю cos^2(x) * sin^2(x)
(sin^2(x) - 4cos^2(x) + 6cos^2(x)*sin^2(x)) / (cos^2(x)*sin^2(x)) = 0
дробь равна 0, когда числитель равен 0, знаменатель не равен 0.
sin^2(x) - 4cos^2(x) + 6cos^2(x)*sin^2(x) = 0
(sin^2(x) - cos^2(x)) + (6cos^2(x)*sin^2(x) - 3cos^2(x)) = 0
-(cos^2(x) - sin^2(x)) + 3cos^2(x)*(2sin^2(x) - 1) = 0
-cos(2x) - 3cos^2(x)*cos(2x) = 0
cos(2x)*(1 + 3cos^2(x)) = 0
1) cos(2x) = 0
2x = π/2 + πk
x = π/4 + πk/2
2) 1 + 3cos^2(x) = 0
cos^2(x) = -1/3 - нет решений
Произведем отбор корней, принадлежащих промежутку x ∈(-7π/2; -2π)
-7π/2 < π/4 + πk/2 < -2π
-7π/2 - π/4 < πk/2 < -2π - π/4
-15π/4 < πk/2 < -9π/4
-15/2 < k < -9/2
k - целое, k = -5; -6; -7
k = -5, x = π/4 - 5π/2 = -9π/4
k = -6, x = π/4 - 6π/2 = -11π/4
k = -7, x = π/4 - 7π/2 = -13π/4

ответ: -9π/4; -11π/4; -13π/4
4,4(73 оценок)
Ответ:
nadialihas2005
nadialihas2005
02.04.2023
Y = x^4 + x^2 - 2 = 0
t^2 + t - 2 = 0, x^2 = t ≥ 0
D=9
t1 = (-1 - 3)/2 < 0 - посторонний корень
t2 = (-1+3)/2 = 2/2 = 1
x^2 = 1
x1= 1, x2 = -1 - это точки пересечения графика с осью абсцисс (Ох).
Y1 = y(x1) + y'(x1)*(x - x1) - уравнение первой касательной в точке x1
Y2 = y(x2) + y'(x2)*(x - x2) - уравнение второй касательной в точке x2
y'(x1) = 4*(x1)^3 + 2*(x1) = 4 + 2 = 6
y'(x2) = 4*(x2)^3 + 2*(x2) = -4 - 2 = -6
y(x1) = y(x2) = 0
Y1 = 6(x - 1) = 6x - 6
Y2 = -6(x+1) = -6x - 6
Y1 = Y2 - найдем точку пересечения касательных
6x - 6 = -6x - 6
12x = 0, x=0, Y1(0) = Y2(0) = -6
(0; -6) - точка пересечения касательных
4,4(39 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ