Например для такого рода задач: задача Найдите сумму всех двузначных чисел, которые при делении на 4 дают в остатке 3
наименьшее такое двузначное -- первый член прогрессии находим (в виду небольшого делителя) достаточно легко перебором 10- наименьшее двузначное число 10:4=2(ост 2) 11:4=2(ост 3) 11 - первый член прогрессии (либо оценивая по общей формуле с нахождения наименьшего(наибольшего) натурального удовлетворяющего неравенство так как при делении на 4 остаток 3 общая форма 4k+3 4k+3>=10 4k>=10-3 4k>=7 4k>=7:4 k>=1.275 наименьшее натуральное k=2 при k=2: 4k+3=4*2+3=11 11 -первый член )
далее разность прогрессии равна числу на которое делим т.е. в данном случае 4
далее ищем последний член прогрессии 99- наибольшее двузначное 99:4=24(ост3) значит 99 - последний член прогрессии (либо с оценки неравенством 4l+3<=99 4l<=99-3 4l<=96 l<=96:4 l<=24 24 - Наибольшее натуральное удовлетворяющее неравенство при l=24 : 4l+3=4*24+3=99 99- последний член прогрессии ) далее определяем по формуле количество членов и находим сумму по формуле ответ: 1265
Пусть 2-я труба наполняет бассейн за х часов, тогда 1-я труба наполняет бассейно за (х -18) часов. производительность (работа за 1 час) 1-й трубы: 1/(х -18), 2-й трубы: 1/х. их общая производительность: 1/(х -18) + 1/х.работая вместе, они сделали всю работу (равную 1) за 12 часовуравнение: (1/(х -18) + 1/х)·12 = 112·(х + х - 18) = х² - 18хх² - 42х + 216 = 0d = 42² - 4·216 = 900√d = 30х₁ = (42 - 30) : 2 = 6 (не подходит по условию , даже работая вместе трубы наполняют бассейн за 12 часов! )х₂ = (42 + 30) : 2 = 36 ответ: 2-я труба наполняет бассейн за 36 часов
попробуйте додумать сами:
у-2х=1
6х-у=7
-2х+у=1 3
6х-у=7
-6х+3у=3
6х-у=7
6х-у=7
2у=10
6х-у=7
у=5
6х-5=7
у=5
6х=7+5
у=5
6х=12
у=5
х=2
у=5