Объяснение:
1) 8у - 3(2у - 3) = 7у - 2(5у + 8), 2) 5(2у - 9) + 6у = 4(3у - 2) - 21,
8y - 6y + 9 = 7y - 10y - 16, 10у - 45 + 6у = 12у - 8 - 21,
2y + 9 =-3у - 16, 16у - 45 = 12у - 29,
2у + 3у = -16 - 9, 16у - 12у = -29 + 45,
5y = -25, 4у = 16,
у = -25 : 5, у = 16 : 4,
y = -5; у = 4;
№ 2. 1) 5(3 - 2у) - 4(9 - у) = 3(у + 5),
15 - 10y - 36 + 4y = 3y + 15,
-6y - 21 = 3у + 15,
-6у - 3у = 15 + 21,
-9y = 36,
у = 36 : (-9),
y = -4;
2) 14(2х - 3) - 5(х + 4) = 2(3х + 5) + 5х,
28x - 42 - 5x - 20 = 6x + 10 + 5x,
23х - 62 = 11х + 10,
23x - 11x = 10 + 62,
12x = 72,
х = 72 : 12,
x = 6;
3) 9(3х - 7) + 3(8х - 11) = 3(9х + 8),
27x - 63 + 24x - 33 = 27x + 24,
51x - 96 = 27х + 24,
51х - 27х = 24 + 96,
24x = 120,
х = 120 : 24,
x = 5;
4) 6(7х - 11) - 13(х - 6) = 14(2х + 1),
42x - 66 - 13x + 78 = 28x + 14,
29x + 12 = 28х + 14,
29x - 28 х = 14 - 12,
х = 2;
№ 3. 1) 1,2х + 7 = 2x + 3, (здесь, видимо, пропущен х)
1,2x - 2х = 3 - 7,
-0,8x = -4,
х = -4 : (-0,8),
x = 5;
2) 8,3 - 2,1х = 2(1,5х + 11,8),
8,3 - 2,1х = 3х + 23,6,
-2,1х - 3х = 23,6 - 8,3,
-5,1х = 15,3,
х = 15,3 : (-5,1),
х = -3;
3) 9(13 - 0,8х) + 6,7 = 7,1х - 5,
117 - 7,2х + 6,7 = 7,1х - 5,
-7,2х + 123,7 = 7,1х - 5,
-7,2х - 7,1х = -5 - 123,7,
-14,3х = -128,7,
х = -128,7 : (-14,3),
х = 9.
1.
а)x^3-2x = х(х²-2)
б)5a^2-10ab+5b^2 = 5(a^2-2ab+b^2) = 5(a-b)²
в)cm-cn+3m-3n = (cm-cn)+(3m-3n) = с(m-n)+3(m-n) = (с+3)(m-n)
2.
2(p+q)²-p(4q-p)+q² = 3p²+3q² при любых p и q
2(p+q)²-p(4q-p)+q² = 2(p²+2pq+q²) -4pq+p²+q² = 2p²+4pq+2q² -4pq+p²+q² = 3p²+3q²
таким образом, мы привели левую часть к правой, тем самым доказав, что значения выражений будут равны при любых p и q
3.
(x-3)(x+3) = x(x-2)
х²-9=х²-2х
2х=9
х=4,5
ответ: при х=4,5
4.
а)(a-3b)(a+3b)+(2b+a)(a-2b) = (a²-9b²) + (a²-4b²) = 2a²-13b²
б)(p+q)(q-p)(q²+p²) = (q²-p²)(q²+p²) = q⁴-p⁴
5.
x³-27-3x(x-3)=0
(x³-3³)-3x(x-3)=0
воспользуемся формулой разности кубов:
(х-3)(х²+3х+9)-3x(x-3)=0
(х-3)(х²+3х+9-3х)=0
х-3=0 или (х²+3х+9-3х)=0
х=3 х²+9=0
х²=-9 - решений нет
ответ: х=3
x²-9x-10<0
D=81-4*(-10)=81+40=121=11²
x1=(10+11)/2=5.5
x2=(10-11)/2=-0.5
ответ:x принадлежит (-0.5;5.5)