Пусть т первый корень уравнения, тогда 2т второй корень уравнения. Подставив значения корней в уравнение ( т и 2т ) получаем систему 2х уравнений с неизвестными т и к. Решив ее, найдем значения первого корня и кожффициента к.
2т^2-кт+4=0 8т^2-2кт+4=0
-4т^2+2кт-8=0 8т^2-2кт+4=0
4т^2-4=0 2т^2-кт+4=0
т=1 или т= -1
Если т=1 то к=6, если т= -1 то к= -6.
Таким образом получили 2 случая:
1) при к=6 корни уравнения ( т и 2т ) равны 1 и 2
2) при к= -6 корни уравнения ( т и 2т ) равны -1 и -2
Каждую точку можно соединить с 14-ю другими. То есть из каждой точки можно провести 14 отрезков. Точек у нас 15. 14*15 = 210. Но так как отрезок, допустим, АВ и отрезок ВА - это один и тот же отрезок, то мы учли каждый отрезок по два раза. Поэтому, что б каждый отрезок учитывался по одному разу, разделим 210 на 2 и получим 105.
Первую точку можем соединить отрезком с 14-ю другими. С первой точкой вторую мы уже соединили, поэтому вторую точку можем соединить уже с 13-ю, по аналогии 3-ю точку с 12-ю, ... , 14-ю точку с одной, 15-я точка уже соединена со всеми. Подсчитаем количество отрезков. 14+13+12+11+10+9+8+7+6+5+4+3+2+1 = 105.
так как основания равны и функция log возрастающая и непрерывная, то
x^2+x=x^2+10
x=10