a/(a^2-b^2)-a/(a^2+ab)=2*b/((a-b)*(a+b))=2корней из 6
сначала в знаменателе вынесем общий множитель за скобки
a/(a*(a-b))-a/(a*(a-b))
приведем к общему знаменателю а*(a-b)*(a+b),дополнительный множитель для первой дроби (a+b) , дополнительный множитель для второй дроби (a-b)
получим
(a*(a+b)-a*(a-b)) / (a*(a-b)*(a+b))
в числителе раскрываем скобки
(а^2+ab-a^2+ab) / (a*(a-b)*(a+b))
в числители приводим подобные слагаемые a^2 -a^2=0 ab+ab=2ab,получим
2ab / (a*(a-b)*(a+b))
сократим на а числитель и знаменатель
получим 2 b / (a-b)*(a+b)
в знаменателе свернем по формуле разность квадратов и получим 2 b / (a^2-b^2)
подставим числа, в числителе будет 2 корней из 6, в знаменателе 1
ответ будет 2корней из 6
используя формулу квадрата суммы или квадрата разности двух выражений,вычислите 1)101 в квадрате=(100+1) в квадрате,2)31 в квадрате,3) 51 в квадрате,4)39 в квадрате,5)103 в квадрате,6)99 в квадрате,7)999 в квадрате,8)1001 в квадрате,9)105 в квадрате,10)52 в квадрате.
Поскольку для любых действительных чисел справедливы выражения: (a+b)^2 = (a+b)(a+b) = a^2+2ab+b^2 (формула квадрата суммы) и (a-b)^2 = (a-b)(a-b) = a^2-2ab+b^2 (формула квадрата разности), то решение для данных примеров:
1) 101^2 = (100+1)^2 = 100^2+2×100×1+1^2 = 10000+200+1 = 10201,
2) 31^2 = (30+1)^2 = 30^2+2×30×1+1^2 = 900+60+1 = 961,
3) 51^2 = (50+1)^2 = 50^2+2×50×1+1^2 = 2500+100+1 = 2601,
4) 39^2 = (40-1)^2 = 40^2-2×40×1+1^2 = 1600-80+1 = 1521,
5) 103^2 = (100+3)^2 = 100^2+2×100×3+3^2 = 10000+600+9 = 10609,
6) 99^2 = (100-1)^2 = 100^2-2×100×1+1^2 = 10000-200+1 = 9801,
7) 999^2 = (1000-1)^2 = 1000^2-2×1000×1+1^2 = 1000000-2000+1 = 998001,
8) 1001^2 = (1000+1)^2 = 1000^2+2×1000×1+1^2 = 1000000+2000+1 = 1002001,
9) 105^2 = (100+5)^2 = 100^2+2×100×5+5^2 = 10000+1000+25 = 11025,
10) 52^2 = (50+2)^2 = 50^2+2×50×2+2^2 = 2500+200+4 = 2704.
8*2^x + 2^x = 3^(x^2+2*x-6) + 3 * 3^(x^2+2*x-6)
9 * 2^x = 4 * 3^(x^2+2*x-6)
2^(x-2) = 3^(x^2+2*x-8)
2 = 3^log(3,2), поэтому
3^(log(3,2)*(x-2)) = 3^(x^2+2*x-8)
log(3,2)*(x-2) = x^2+2*x-8
x^2 + x*(2 - log(3,2)) - 8 + 2*log(3,2)=0
D = (2 - log(3,2))^2 - 4 * (-8 + 2*log(3,2)) = 4 - 4*log(3,2) + (log(3,2))^2 + 32 - 8*log(3,2) = (log(3,2))^2 - 12*log(3,2) +36 = (log(3,2) - 6)^2
x(1,2) = (log(3,2) - 2 +- (log(3,2) - 6)) / 2
x1 = (log(3,2) - 2 - log(3,2) + 6) / 2 = 2
x2 = (log(3,2) - 2 + log(3,2) - 6) / 2 = log(3,2) - 4