Пусть первая бригада, работая одна, выполняет работу за x часов; тогда второй бригаде на выполнение всей работы потребуется (x+10) часов.
Соотвественно, производительность труда первой бригады равна (1/x) (1/час), второй бригады — (1/(x+10)) (1/час).
За 12 часов обе бригады, работая совместно, выполнят всю работу (т. е. 1). Получаем уравнение:
12*(1/x + 1/(x+10)) = 1.
Умножаем левую и правую части на x(x+10):
12(x+10) + 12x = x(x+10);
x² + 10x − 24x − 120 = 0;
x² − 14x − 120 = 0.
Выбираем положительное значение x:
x = 7 + √(49+120) = 20.
Значит, первой бригаде для выполнения всей работы потребуется 20 часов, а второй бригаде — 20+10=30 часа.
Проверяем: 12*(1/20+1/30) = 12*(5/60) = 1 (Ok).
ОТВЕТ: первой бригаде для выполнения этой работы потребовалось бы 20 часов.
Пусть первая бригада, работая одна, выполняет работу за x часов; тогда второй бригаде на выполнение всей работы потребуется (x+10) часов.
Соотвественно, производительность труда первой бригады равна (1/x) (1/час), второй бригады — (1/(x+10)) (1/час).
За 12 часов обе бригады, работая совместно, выполнят всю работу (т. е. 1). Получаем уравнение:
12*(1/x + 1/(x+10)) = 1.
Умножаем левую и правую части на x(x+10):
12(x+10) + 12x = x(x+10);
x² + 10x − 24x − 120 = 0;
x² − 14x − 120 = 0.
Выбираем положительное значение x:
x = 7 + √(49+120) = 20.
Значит, первой бригаде для выполнения всей работы потребуется 20 часов, а второй бригаде — 20+10=30 часа.
Проверяем: 12*(1/20+1/30) = 12*(5/60) = 1 (Ok).
ОТВЕТ: первой бригаде для выполнения этой работы потребовалось бы 20 часов.
{2/a+9/b=2⇒2b+9a=2ab
{4/a=12/b-1⇒4b-12a=-ab⇒ab=12a-4b
2b+9a=2*(12a-4b)
2b+9a=24a-8b
2b+8b=24a-9a
10b=15a
b=1,5a
подставим в 1
3a+9a=3a²
3a²-12a=0
3a(a-4)=0
a1=0⇒x+y=0 не удов усл
a2=4⇒b=6
{x+y=4
{2x+y=6
отнимем
х=2
2+у=4
у=2
ответ (2;2)