1) aab + ab = k² Позиционная десятичная система. Число aab < 1000, даже если к нему прибавить число ab < 100, то aab + ab < 1100. Значит, можно попробовать метод подбора, проверить все квадраты меньше 1100. Распишем исходное уравнение: 100a + 10a + b + 10a + b = 120a + 2b = 2 * (60a + b) Отсюда следует, что проверить надо лишь чётные квадраты. Выпишем их: 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900 и 1024. При подборе учтём, что ab + ab < 100, иначе будет перенос в следующий разряд, и число сотен (равное а) увеличится на 1. Проверка показывает, что подходят два числа: 256 и 484. В первом случае aab = 228 и ab = 28; aab + ab = 228 + 28 = 256 = 16² Во втором - aab = 442 и ab = 42; aab + ab = 442 + 42 = 484 = 22² ответ: ab = 28 и ab = 42