у = √(х² - 9)
Область определения функции - это множество значений переменной х. В нашем случае - под знаком корня должно стоять выражение, принимающее неотрицательные значения, т.е. область определения - это решение неравенства х² - 9 ≥ 0. Решим неравенство методом интервалов.
Рассмотрим функцию у = х² - 9 и найдем те значения х, при которых функция у = х² - 9 принимает неотрицательные значения. Найдем ее нули:
х² - 9 = 0,
(х - 3)(х + 3) = 0,
х - 3 = 0 или х + 3 = 0,
х₁ = 3, х₂ = -3.
Отметим на координатной прямой интервалы, ограниченные найденными нулями:
+ - +
||
-3 3
х ∈ (-∞; -3] ∪ [3; +∞), т.е. область определения функции у = √(х² - 9) - это объединение промежутков (-∞; -3] ∪ [3; +∞).
ответ: (-∞; -3] ∪ [3; +∞).
0,1
Объяснение:
Сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр – ноль, а другая цифра – нечётная. Здесь рациональнее не мудрить, и воспользоваться методом прямого перечисления исходов. То есть, при оформлении решения просто записываем все комбинации:
01, 03, 05, 07, 09
10, 30, 50, 70, 90
И подсчитываем их – всего: 10 исходов.
Благоприятствующий исход один: верный номер.
По классическому определению:
Р = 10/100 = 1/10 = 0,1 – вероятность того, что абонент наберёт правильный номер
a -b =2.4*10^3 - 1.2*10² =120*(2*10 -1) =120*19 =2280
a *b =2.4*10^3 *1.2*10² =2.4*1.2*10^5 =2.88*100000 =288000
a : b =(2.4*10^3) /(1.2*10²) =2*10 =20