радиусы вписанной окружности, проведенные в точки касания, будут _|_ сторонам треугольника,
два радиуса, проведенные к катетам, вырезают из треугольника квадрат со стороной, равной радиусу (r),
оставшиеся части катетов равны, соответственно, a-r и b-r
центр вписанной окружности ---это точка пересечения биссектрис треугольника,
часть биссектрисы, соединяющая центр вписанной окружности и вершину треугольника будет общей гипотенузой двух равных прямоугольных треугольников с катетом = r
если рассмотреть две пары таких равных прямоугольных треугольников, то можно заметить, что c = (a-r) + (b-r)
отсюда c = a + b - 2r
2r = a+b-c
r = (a+b-c)/2
Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.
1-ое свойство, которое понадобится
То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.
2-ое свойство, которое нам понадобится:
То есть довольно аналогичная вещь в произведении
На нашем примере все увидим
Находим остатки по модулю 31
Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например,
, но сейчас это не нужно), нам повезло, это 32
Учитываем, что
, получаем
То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым
Остаток 21, чудесно. Выполняем последний шаг.
То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.