x3+x−2=0
x3+x−2=0Ищем первый корень через делители числа -2.
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)Получаем результат x^{2}+x+2x2+x+2 .
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)Получаем результат x^{2}+x+2x2+x+2 .Приравниваем его к нулю, видим, что корней нет, так как дискриминат отрицательный.
x3+x−2=0Ищем первый корень через делители числа -2.D=-2;-1;1;2Очевидно, что корень будет x=1Далее делим в столбик начальное выражение на корень уравнения (x-1)Получаем результат x^{2}+x+2x2+x+2 .Приравниваем его к нулю, видим, что корней нет, так как дискриминат отрицательный.Следовательно, ответ: x=1
1 рабочий выполняет 1/х часть работы за час
2 рабочий выполняет 1/у часть работы за час
1/х + 1/у = 1/12 | * 12ху
12у + 12х = ху
12(у + х) = ху (*)
Теперь смотрим на следующее условие: 1 рабочий пол-работы + 2 рабочий пол-работы делаю з 25 часов
Значит, х/2 + у/2 = 25|*2
х + у = 50(**)
Уравнение (*) будет выглядеть: 12*50 = ху
Теперь у нас есть простенькая система:
12*50 = ху
х + у = 50 Решаем подстановкой: х = 50 - у
600 = у(50 - у)
600 = 50у - у²
у² - 50у + 600 = 0
по т. Виета корни у₁= 30 и у₂ = 20
Ну, а х = 50 - у
так что х₁ = 20, х₂ = 30
ответ 1-му нужно 20 часов, 2-му - 30 часов или 1-му нужно 30 часов, 2-му 20 часов.