

, тогда подставив в однородное уравнение, получаем характеристическое уравнение


отсюда 
- многочлен степени х
с корнями характеристического уравнения и, принимая во внимания что n=1 , частное решение будем искать в виде:



- ответ
1)
ОДЗ:
⇒
⇒ ![x \in (-\infty; -2] \cup [3;+\infty)](/tpl/images/1361/5355/f678f.png)
⇔
или 
⇒
или
⇒
или
или 
не входит в ОДЗ
два корня
или 
при ![x \in (-\infty; -2] \cup [3;+\infty)](/tpl/images/1361/5355/f678f.png)
, тогда
⇒
⇒ 
C учетом
получаем ответ:

2)
ОДЗ:
⇒
⇒ ![x \in (-\infty; -2] \cup [4;+\infty)](/tpl/images/1361/5355/4ed2b.png)
⇔
или 
⇒
или
⇒
или
или 
не входит в ОДЗ
два корня
или 
при ![x \in (-\infty; -2] \cup [4;+\infty)](/tpl/images/1361/5355/4ed2b.png)
, тогда
⇒
⇒ 
C учетом
получаем ответ:
![(-\infty;-2]\cup \{2\}](/tpl/images/1361/5355/83f26.png)
3)

Так как
при любых х, возводим данное неравенство в квадрат:


D=16-12=4


Показательная функция с основанием 3 возрастает

О т в е т. (0;1)
4)

Так как
при любых х, возводим данное неравенство в квадрат:



D=36-20=16


Показательная функция с основанием 5 возрастает

О т в е т. (0;1)
x+cosx=1/2(x²+2sinx)', т.к.
(x²+sinx)'=2х+2cosx
Объяснение: