Любое выражение, умноженное на 0, равна 0.
При делении любого выражения на 0 получается неопределенное выражение
Объяснение:
Запишем деление единицы на ноль:
a = 1/0
Отсюда:
a • 0 = 1
Нужно найти такое a, которое при умножении на ноль дает единицу. Таких чисел просто нет. Так как произведение равно нулю, когда один из множителей равен нулю, получаем:
0 = 1
Но ноль не равен единице, поэтому запись 0 = 1 неверна, а запись a = 1/0 не имеет смысла (решений) при любом a. А если разделить ноль на ноль? Запишем:
a = 0/0
a • 0 = 0
Уравнение имеет смысл при любых значениях a, так как умножая 0 на a получаем:
0 = 0
Объяснение:
Рассматривая дробное уравнение, мы положим, что 9у4 – 1 <> 0, так как знаменатель не может быть равен нулю. Вычислим при каких У это неравенство выполнимо.
9у4 = 1.
У = √1/3, при данных значениях "У" знаменатель будет равен 0, что недопустимо.
То есть У <> √1/3.
Теперь рассмотрим числитель, который согласно уравнению должен принимать нулевые значения, чтобы выполнялось равенство.
3у3 – 12у2 – у + 4 = 0.
Преобразуем выражение.
3у2 * (у – 4) – (у – 4) = 0.
Вынесем общий множитель (у – 4) за скобку.
(у – 4) * (3у2 - 1) = 0.
Таким образом, получаем 2 уравнения, которые по отдельности должны быть равны 0 для выполнения равенства.
1) У – 4 = 0.
У = 4.
2) (3у2 - 1) = 0.
3у2 = 1.
у2 = 1/3.
У = √1/3, этот корень не подходит по условиям У <> √1/3.
Остается 1 корень у = 4.
ответ: у = 4.
2)5