М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
inakuleshova19
inakuleshova19
28.12.2021 18:49 •  Алгебра

Решите ! выражение: 1) (3x²-2x)+(-x2²+3x) 2) (4c²-²+8cd) 3) (12m²-7n--10n+14m²) 4) (3n³-2mn+4m³+3n³) 7 класс, мерзляков, поляков, номер 9.4

👇
Ответ:
soloviovav82owjd2t
soloviovav82owjd2t
28.12.2021
Только перепроверь на всякий случай )))
4,5(16 оценок)
Открыть все ответы
Ответ:
Farida1601
Farida1601
28.12.2021

Формулировка и доказательство теоремы косинусов

Теорема косинусов является обобщением теоремы Пифагора для произвольного треугольника.

Формулировка теоремы косинусов

Для плоского треугольника со сторонами a,b,c и углом α, противолежащим стороне a, справедливо соотношение:

Теорема косинусов

Изображение для пояснения сути теоремы косинусов - квадрат стороны произвольного треугольника равен сумме квадратов двух других сторон минус удвоенное их произведение на косинус угла между ними

Квадрат одной стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного их произведения, умноженного на косинус угла между ними

Полезные формулы теоремы косинусов:

Полезные формулы теоремы косинусов - сама теорема, нахождение косинуса угла по трем сторонам и нахождение самого угла по трем сторонам треугольника

Как видно из указанного выше, с теоремы косинусов можно найти не только сторону треугольника по двум сторонам и углу между ними, можно, зная размеры всех сторон треугольника, определить косинусы всех углов, а также вычислить величину любого угла треугольника. Вычисление любого угла треугольника по его сторонам является следствием преобразования формулы теоремы косинусов.

Доказательство теоремы косинусов

Теорема Косинусов

Рассмотрим произвольный треугольник ABC. Предположим, что нам известна величина стороны AC (она равна некому числу b), величина стороны AB (она равна некому числу c) и угол между этими сторонами, величина которого равна α. Найдем величину стороны BC (обозначив ее длину через переменную a)

Для доказательства теоремы косинусов проведем дополнительные построения. Из вершины C на сторону AB опустим высоту CD.

Найдем длину стороны AB. Как видно из рисунка, в результате дополнительного построения можно сказать, что

AB = AD + BD

Найдем длину отрезка AD. Исходя из того, что треугольник ADC является прямоугольным, нам известны длина его гипотенузы (b) и угол (α) то величину стороны AD можно найти из соотношения его сторон, пользуясь свойствами тригонометрических функций в прямоугольном треугольнике:

AD / AC = cos α

откуда

AD = AC cos α

AD = b cos α

Длину стороны BD найдем как разность AB и AD:

BD = AB - AD

BD = c − b cos α

Теперь запишем теорему Пифагора для двух прямоугольных треугольников ADC и BDC:

для треугольника BDC

CD2 + BD2 = BC2

для треугольника ADC

CD2 + AD2 = AC2

Обратим внимание на то, что оба треугольника имеют общую сторону - CD. Определим ее длину для каждого треугольника - вынесем ее значение в левую часть выражения, а остальное - в правую.

CD2 = BC2 - BD2

CD2 = AC2 - AD2

Поскольку левые части уравнений (квадрат стороны CD) равны, то приравняем правые части уравнений:

BC2 - BD2 = AC2 - AD2

Исходя из сделанных ранее вычислений, мы уже знаем что:

AD = b cos α

BD = c − b cos α

AC = b (по условию)

А значение стороны BC обозначим как a.

BC = a

(Именно его нам и нужно найти)

Получим:

BC2 - BD2 = AC2 - AD2

Заменим буквенные обозначения сторон на результаты наших вычислений

a2 - ( c − b cos α )2 = b2 - ( b cos α )2

перенесем неизвестное значение (а) на левую сторону, а остальные части уравнения - на правую

a2 = ( c − b cos α )2 + b2 - ( b cos α )2

раскроем скобки

a2 = b2 + c 2 - 2c b cos α + ( b cos α )2 - ( b cos α )2

получаем

a2 = b2 + c 2 - 2bc cos α

Теорема косинусов доказана.

Случай, когда один из углов при основании тупой (и высота падает на продолжение основания), полностью аналогичен рассмотренному.

4,7(57 оценок)
Ответ:
Odagio
Odagio
28.12.2021

Объяснение:

Папа подарил Вите замечательный ножик. Чего только не предлагали ребята ему в обмен на ножик! Но Витя и слушать не хотел.

Ножик был очень красивый. Он имел много предметов. Два острых лезвия,

которыми можно было заточить карандаш, резать хлеб и овощи, легко срезать ветки. Снабжён ножницами, вилкой и ложкой. Было тут и шило и даже удобная пилка, которой можно перепилить небольшие металлические прутки. Такой ножик необходимая вещь в лесу, в походе и в дороге.

В школе Витя увидел в руках Петьки снегиря, к лапке которого была привязана нитка. Петька то отпустить снегиря, то опять притянет к себе. Снегирь взмахивал крыльями, пытаясь улететь, но нитка удерживала бедную птичку. Снегирь был так измучен, что всё слабей и слабей делал попытки улететь от мучителя. От усталости его головка вяло склонялась на бок, а глаза закрывались. А Петька весело наслаждался измученой птичкой.

У Вити сжалось сердце, при виде таких издевательств. Он решил снегиря. Предлагал Петьке разные игрушки, вещички, но Петька ни на что не соглашался. Тогда Витя решился на самое дорогое, что у него было. Он предложил, подаренный ему ножик. Петька осмотрел нож, подумал и согласился на обмен.

Витя отдал Петьке ножик, и обмен состоялся. Витя снял нитку с лапки птицы, взлез на подоконник и открыл форточку. Поднёс к форточке руку с измученным снегирём. Птичка почувствовала свежую струю воздуха. Головка поднялась на встречу свободе. Крылышки его расправились. На какое то мгновение снегирь замер, как бы выражая благодарность своему Потом маленькое тельце птички встрепенулось в прыжке. Он взмахнул крыльями и радостно взмыл на свободу.

Витя восторженно посмотрел в след улетающей птичке. О ножике, подаренном ему отцом, Витя ни чуть не жалелк

4,6(63 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ