По определению, 
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение 
2) 

А значит, если взять
(*),
. И правда: 
(*) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4) 


А значит, если взять
(**),
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда 
4)

___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 
Задача №2. Пусть Х - скорость течения реки, тогда скорость катера по течению равна (8+Х) км/ч, а против течения (8-Х) км/ч. Тогда на путь по течению он затратил 15/(8+Х) ч, а на путь против течения 15/(8-Х) ч.
Т. к. по условию на весь путь туда и обртно затрачено 4 ч, составим уравнение:
15/(8+Х) + 15/(8-Х) = 4 (приводим к общему знаменателю (8+Х) *(8-Х) = 8^2 - Х^2 = 64 - Х^2 )
(120 + 15Х + 120 - 15Х - 4(64 +Х^2) ) /64 - Х^2 = 0
система:
120 + 15Х + 120 - 15Х - 4(64 +Х^2) = 0
64 - Х^2 не равоно 0
Решаем первое ур-ние системы:
240 -256 + 4Х^2 = 0
4Х^2 = 16
Х^2 = 4
Х = 2
Получается:
А) не подходит
Б) Подходит
В) не подходит
Г) не подходит