Задание 1.
1) 15ab+10bc= 5b(3a+2c).
2)3x²+6xy+3y²= 3(x²+2xy+y²)= 3(x+y)².
3)6x(x-1)-(1-x)= 6x(x-1)+(x-1)= (x-1)(6x+1).
4)3a³+3= 3(a³+1)= 3(a+1)(a²-a+1).
5) 2a-2b+a²-b²= 2(a-b)+(a-b)(a+b)= (a-b)(2+a+b).
6)-3x(x+3)+x³+27= -3x(x+3)+(x+3)(x²-3х+9)= (х+3)(-3х+х²-3х+9)= (х+3)(х²-6х+9)=(х+3)(х-3)².
Задание 2.
(43²-17²):(43²-2•43•17+17²)= ((43-17)(43+17)) ÷ (43-17)²= 26•60÷26²= 60÷26=30/13= 2 4/13 (две целых четыре тринадцатых).
P.S. Возможно Вы неправильно списали с условия во втором задании, пересмотрите условие, я заменила "+" на знак умножения.
В решении.
Объяснение:
Задание на разность квадратов:
а² - в² = (а - в)*(а + в).
1) При каких значениях переменной x выражение (x-3)²-14² равно 0? Если таких значений несколько.
(x-3)²-14²=0
(х - 3 - 14)*(х - 3 + 14) = 0
(х - 17)*(х + 11) = 0
х - 17 = 0
х₁ = 17;
х + 11 = 0
х₂ = -11.
При х = 17 и х = -11 данное выражение равно нулю.
2) При каких значениях переменной x выражение ( x-9)²-8² равно 0? Если таких значений несколько.
( x-9)²-8²=0
(х - 9 - 8)*(х - 9 + 8) = 0
(х - 17)*(х - 1) = 0
х - 17 = 0
х₁ = 17;
х - 1 = 0
х₂ = 1.
При х = 17 и х = 1 данное выражение равно нулю.
3) При каких значениях переменной x выражение ( x-7)²-3² равно 0? Если таких значений несколько.
( x-7)²-3²=0
(х - 7 - 3)*(х - 7 + 3) = 0
(х - 10)*(х - 4) = 0
х - 10 = 0
х₁ = 10;
х - 4 = 0
х₂ = 4.
При х = 10 и х = 4 данное выражение равно нулю.
4) При каких значениях переменной x выражение ( x-9)²-17² равно 0? Если таких значений несколько.
( x-9)²-17²=0
(х - 9 - 17)*(х - 9 + 17) = 0
(х - 26)*(х + 8) = 0
х - 26 = 0
х₁ = 26;
х + 8 = 0
х₂ = -8.
При х = 26 и х = -8 данное выражение равно нулю.