1) x²+3x-40= 0;
2) 13х²-65х-468=0.
есть, как минимум, два сделать это быстро:
1) корни х₁= -5 и х₂= 8
По теореме Виета
х²+рх+q=0
x₁*x₂=q
x₁+x₂=-p
q=-5*8= -40;
-p= -5+8= -3; →p=3
x²+3x-40= 0.
(Можем домножить уравнение на любое число- корни не изменятся,
Например: 3(х²+3х-40)=0*3;
3х²+9х-120=0; - тоже правильный ответ)
2) Любой квадратный трёхчлен ax²+bx+c можно представить в виде множителей:
ax²+bx+c=a (x-x₁)(x-x₂), где x₁, x₂ — корни квадратного уравнения ax₂+bx+c=0.
Поэтому для корней x₁=9, x₂= -4 возьмём любое значение а. Например я хочу а=13 ( Вы можете взять другое)
13(х-9)(х-(-4))=(13х-117)(х+4)=13х²+52х-117х-468=13х²-65х-468.
13х²-65х-468=0.
(Если разделим на 13, то есть а=1 получим х²-5х-36=0 -тоже ответ).
Попробуйте сами- это интересно и ответ будет только Ваш.
1) ax - bx - x + ay - by - y = (ax + ay) - (bx + by) - (x + y) =
a(x + y) - b(x + y) - (x + y) = (a - b - 1)(x + y)
2) 2a^(2) - a + 2ab - b - 2ac + c = (2a^(2)) - (b + c) - (2ab + 2ac) =
a(2a - 1) - (b + c) - 2a(b + c) = a(2a - 1) - (1 - 2a)(b + c) =
a(2a - 1) + (2a - 1)(b + c) = (a + b + c)(2a - 1)
3) a^(5) - a^(4)b + a^(3)b^(2) - a^(2)b^(3) +ab^(4) - b^(5) =
(a^(5) - a^(4)b + a^(3)b^(2)) - (a^(2)b^(3) - ab^(4) - b^(5)) =
a^(3)(a^(2) - ab +b^(2)) - b^(3)(a^(2) - ab + b^(2)) = (a^(3)-b^(3))(a^(2) - ab + b^(2))
Числа идут так: 10, 12, 13 ... 20, 21, 23 ... 98 (Так как исключаются числа вида хх)
Всего их: 9×9 = 81
а) На 3 из них делятся числа: 12, 15, 18 ... 96
Их (96 - 12)/3 + 1 - 2 = 29 - 2
Р = 27/81 ≈ 0.(3)
(33, 66 и подобные не входят в те, которые можно составить из 10 карточек с разными цифрами)
б) Делители 99 это 1, 3, 9, 11, 33, 99
Ни один из них нельзя получить из наших карточек.
Р = 0
в) У нас нет ни одного числа, которое делится на 11.
Р = 0
ответ: а) Р ≈ 0.34; б) Р = 0; в) Р = 0