Карточки образуют множество из n = 9 различимых элементов (на карточках
различные цифры). Для образования трехзначного числа надо взять подмножество из 3-х
карточек и упорядочить его. Таким образом, k = 3. Подмножество 3-х карточек определяется
элементами, входящими в него, и порядком следования этих элементов. Например, 123, 321,
132, 312, 213, 231. Поэтому любому такому трехзначному числу соответствует размещение из
9-ти элементов по 3. Количество трехзначных чисел, которые можно изобразить при
х карточек, совпадает с числом различных размещений из 9-ти элементов по 3 и может быть
найдено по формуле
9!
A3 =
9 = 7 ⋅ 8 ⋅ 9 = 504.
6!
Карточки образуют множество из n = 9 различимых элементов (на карточках
различные цифры). Для образования трехзначного числа надо взять подмножество из 3-х
карточек и упорядочить его. Таким образом, k = 3. Подмножество 3-х карточек определяется
элементами, входящими в него, и порядком следования этих элементов. Например, 123, 321,
132, 312, 213, 231. Поэтому любому такому трехзначному числу соответствует размещение из
9-ти элементов по 3. Количество трехзначных чисел, которые можно изобразить при
х карточек, совпадает с числом различных размещений из 9-ти элементов по 3 и может быть
найдено по формуле
9!
A3 =
9 = 7 ⋅ 8 ⋅ 9 = 504.
6!
22cos^2x + 8sinx*cosx = 7(cos^2x + sin^2x)
22cos^2x + 8sinx*cosx = 7cos^2x + 7sin^2x)
- 7sin^2x + 8sinxcosx + 15cos^2x = 0 /:cos^2x ≠ 0
- 7tg^2x + 8tgx + 15 = 0
7tg^2x - 8tgx - 15 = 0
tgx = t
7t^2 - 8t - 15 = 0
D = 64 + 4*15*7 = 484 = 22^2
t1 = ( 8 + 22)/14 = 30/14 = 15/7
t2 = ( 8 - 22)/14 = - 14/14 = - 1
1) tgx = 15/7
x = arctg(15/7) + pik, k ∈ Z
2) tgx = - 1
x = - pi/4 + pik, k ∈ Z