300 л в минуту или 300·60=18 000 л в час наполняет 1 труба
Пусть вторая наполняет х л в час,третья у л в час.
Пусть сначала первая труба проработала t часов, а вторая и третья вместе в два раза больше, т.е 2 t часов 18 000·t + 2t·(x+y)=500 000 12,5(x+y)=18 000t
Выражаем (х+у) из второго уравнения (x+y)=18 000·t/12,5 и подставляем в первое:
18 000 t + 2t·1 440t=500 00 или 36t²+225t-6250=0 a=36, b=225, c=-6250
D=b²-4ac=225²+4·36·6250=950625=975² t₁=(-225-975)/2<0 t₂=(-225+975)/72=750/72=10 целых 30/72 часа= =10 целых 5/12= 10 целых 25/60=10 часов 25 минут
Уравнение квадратной параболы в общем виде: у = ах² + вх + с Найдём коэффициенты а, в, с Подставим координаты точки А -6 = а· 0² + в·0 + с → с = -6 Подставим координаты точки В -9 = а·1² + в·1 - 6 → а + в = -3 (1) Подставим координаты точки С 6 = а·6² + в·6 - 6 → 6а + в = 2 → в = 2 - 6а (2) Подставим (2) а (1) а + 2 - 6а = -3 → а = 1 Из (2) получим в = -4 Итак, мы получили уравнение параболы: у = х² - 4х - 6 Абсцисса вершины параболы: m =-в/2а = 4 / 2 = 2 Ординату вершины параболы найдём, подставив в уравнение параболы х = m = 2 у = 2² - 4 · 2 - 6 = -10 ответ: вершиной параболы является точка с координатами (2; -10)
bsa - прямоугольный
Sbsa=1/2*SA*BA
Sbsa=58,5
cab-равнобедренный
CA=BA=13
в него входит cak-прямоугольный
ck=1/2CB=5
AK^2=13^2-5^2
AK=12
Scab=1/2*AK*CB
Scab=1/2*10*12
Scab=5*12
Scab=60
BS=sqr 250
SK^2=250-25=225
SK=15
Scsb=1/2*15*10=5*15=75
Scsa=Sbsa=58,5
Sполн = 58,5*2+75+60=117+75+60=252
ответ: 252