Перенесём правую часть уравнения в левую часть уравнения со знаком минус.
Уравнение превратится из
(x−1)(x+y+1)=3 (x−1)(x+y+1)=3
в (x−1)(x+y+1)−3=0 (x−1)(x+y+1)−3=0
Раскроем выражение в уравнении
(x−1)(x+y+1)−3=0 (x−1)(x+y+1)−3=0
Получаем квадратное уравнение
x^ 2 +xy−y−4=0
Это уравнение вида
a*x^2 + b*x + c = 0
Квадратное уравнение можно решить с дискриминанта.
Корни квадратного уравнения:
x1 =(√D – b)/2a
x2 =-(√D – b)/2a
где D = b^2 - 4*a*c - это дискриминант.
Т.к. a=1
b=y
c=−y−4
то
D = b^2 - 4 * a * c = y^2 - 4 * (1) * (-4 - y) = 16 + y^2 + 4*y
Уравнение имеет два корня.
x1 = (-b + √ (D))/(2*a)
x2 = (-b - √ (D))/(2*a)
ИЛИ
Х1 =−y/2 - 1/2*√y^2 + 4y + 16
Х2 =−y/2 + 1/2*√y^2 + 4y + 16
Так как неравенство строгое, то оно равносильно неравенству
(x-4)(3x-2)(3x+4)<0;
Неравенство можно решить методом интервалов.
Нули: 4; 2/3; -4/3.
Промежутки:
(-∞;-4/3), (-4/3;2/3), (2/3;4), (4;+∞)
- + - +
х∈(-∞;-4/3)∪(2/3;4).
ОДЗ:
3x-4>0;
3x>4;
x>4/3;
3x+4>0;
3x>-4;
x>-4/3;
x-2>0;
x>2.
Общее решение:
х∈(2;4).
ответ: (2;4).