32 см
Объяснение:
Пусть х см - ширина прямоугольника, тогда
(х+4) см - длина прямоугольника
(х(х+4)) кв.см -площадь прямоугольника
Т.к. по условиям задачи площадь равна 60 кв.см , составим и решим уравнение.
х(х+4)=60
х^2+4х=60
х^2+4х-60=0
а=1 b=4 c=-60
D=b^2-4ac=4^2-4*1*(-60)=16+240=256
x=(-b+корень D)/2а=(-4+корень 256)/2*1=(-4+16)/2=12/2=6
x=(-b-корень D)/2а=(-4-корень 256)/2*1=(-4-16)/2=-20/2=-10
-10 - значения стороны не может быть отрицательным
6 см-ширина прямоугольника
1) Находим периметр периметр по формуле 2*(a+b)=2*(6+(6+4))=32 см
n^2 - это число во второй степени
Объяснение:
1.
C⁵ₓ₊₁=(3/8)*A³ₓ
(x+1)!/((x+1-5)!*5!)=(3/8)*x!/(x-3)!
(x+1)!/((x-4)!*5!)=(3/8)*x!/((x-4)!(x-3))
x!*(x+1)/5!=(3/8)*x!/(x-3)
(x+1)/5!=(3/8)/(x-3)
(x-3)*(x+1)=(3/8)*120
x²-2x-3=45
x₂-2x-48=0 D=196 √D=14
x₁=-6 ∉ x₂=8.
ответ: х=8.
2.
Cˣ⁻⁴ₓ₊₁=(7/15)*A³ₓ₊₁
(x+1)!/((x+1-(x-4))!*(x-4)!=(7/15)*(x+1)!/(x+1-3)!
(x+1)!/(5!*(x-4)!=(7/15)*(x+1)!/(x-2)!
1/(5!*(x-4)!)=(7/15)/((x-4)!*(x-3)*(x-2))
1/5!=(7/15)/((x-3)*(x-2))
15*(x-3)*(x-2)=7*5!
15*(x²-5x+6)=7*120 |÷15
x²-5x+6=7*8
x²-5x+6=56
x²-5x-50=0 D=225 √D=15
x₁=-5 ∉ x₂=10.
ответ: х=10.