М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
анна2167
анна2167
15.02.2023 02:44 •  Алгебра

5b^2-14ab/25b^2-196a^2 при a=-корень из 2 ,b=корень из 8

👇
Ответ:
madamburkova20
madamburkova20
15.02.2023
a=-\sqrt2\; ,\; \; b=\sqrt8\\\\ \frac{5b^2-14ab}{25b^2-196a^2} = \frac{b(5b-14a)}{(5b-14a)(5b+14a)} = \frac{b}{5b+14a} = \frac{\sqrt8}{5\cdot \sqrt8+14\cdot (-\sqrt2)} =\\\\= \frac{2\sqrt2}{5\cdot 2\sqrt2-2\sqrt2\cdot 7} = \frac{2\sqrt2}{2\sqrt2\cdot (5-7)} =-\frac{1}{2}
4,8(71 оценок)
Открыть все ответы
Ответ:
KaraKiller
KaraKiller
15.02.2023

Нам дан прямоугольный треугольник. Вспомним, как можно найти его площадь:

S = 1/2 a*b, где a  и b -- катеты треугольника.

Также вспомним теорему Пифагора: C² = A² + B², где С -- гипотенуза, а А и В -- катеты.

Пусть А -- меньший катет, который равен х. Тогда гипотенуза будет равна (х + 9). Чтобы найти второй катет, выразим его из теоремы Пифагора:

В² = С² - А²

Теперь подставим значения:

В² = (x + 9)² - x²

Мы видим формулу разности квадратов, раскроем её:

В² = (x + 9 - x)(x + 9 + x) = 9(2x + 9)

Тогда В = 3√(2х + 9).

Подставим полученные выражения в формулу площади:

S = 1/2 * a * b = 1/2 * x * 3√(2x + 9);     S = 60 =>

60 = 1/2x * 3√(2x +9)

120 = 3x√(2x + 9)

x√(2x +9) = 40

Возведём всё в квадрат, чтобы избавиться от корня:

x² * (2x + 9) = 1600

Перемножим:

2x³ + 9x² - 1600 = 0

Чтобы разложить на множители представим 9х как (25х - 16х):

2x³ - 16x² + 25x² - 1600 = 0

Сгруппируем попарно и вынесем общий множитель из каждой пары:

(2x³ - 16x²) + (25x² - 1600) = 0

2x² (x - 8) + 25 (x² - 64) = 0

Разложим разность квадратов во второй скобке:

2x² (x - 8) + 25 (x - 8)(x + 8) = 0

Вынесем общий множитель (х - 8) за скобку:

(x - 8) (2x² + 25 (x + 8) = 0

Раскроем третью скобку:

(x - 8) (2x² + 25x + 200) = 0

x - 8 = 0 или 2x² + 25x + 200 = 0

Рассмотрим оба случая:

1. x - 8 = 0

x = 8

2. 2x² + 25x + 200 = 0

D = b² - 4ac = 625 - 4*400 = 625 - 1600.

Дискриминант отрицательный, значит в данном уравнении корней нет.

Итак меньший катет равен 8, тогда гипотенуза равна:

8 + 9 = 17

А второй катет, или катет В:

3√(2х + 9) = 3√(2*8 + 9) = 3√ (16 + 9) = 3√25 = 3*5 = 15.

ответ: Меньший катет равен 8, гипотенуза равна 17, больший катет равен 15.

4,8(20 оценок)
Ответ:
Danil200000006
Danil200000006
15.02.2023
Рассмотрим сначала числа со старшим разрядом единиц
(в обратном порядке):

9^2 = 81 \ ;       сумма количества цифр: 1 + 2 = 3 , количество цифр у квадрата числа вдвое больше количества цифр исходного числа.

4^2 = 16 \ ;       искомая сумма: 1 + 2 = 3 , количество цифр у квадрата числа всё так же вдвое больше количества цифр исходного.

3^2 = 9 \ ;       искомая сумма: 1 + 1 = 2 , количество цифр у квадрата равно количеству цифр исходного.

0^2 = 0 \ ;       искомая сумма: 1 + 1 = 2 , количество у квадрата равно количеству цифр исходного.

Теперь переходим к старшему разряду десятков
(в обратном порядке):

99^2 < 10 \ 000 \ ;       сумма: 2 + 4 = 6 , количество цифр у квадрата вдвое больше количества цифр исходного.

40^2 = 1600 \ ;       сумма: 2 + 4 = 6 , цифр у квадрата всё так же вдвое больше количества цифр исходного.

30^2 = 900 \ ;       сумма: 2 + 3 = 5 , цифр у квадрата числа: 3 = 4–1 .

10^2 = 100 \ ;       сумма: 2 + 3 = 5 , цифр у квадрата: 3 = 4–1 .

Далее переходим к старшему разряду сотен
(в обратном порядке):

999^2 < 1 \ 000 \ 000 \ ;       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.

400^2 = 160 \ 000 \ ;       сумма: 3 + 6 = 9 , цифр у квадрата вдвое больше.

300^2 = 90 \ 000 \ ;       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .

100^2 = 10 \ 000 \ ;       сумма: 3 + 5 = 8 , цифр у квадрата числа: 5 = 3*2–1 .

Ну и ещё переходим к старшему разряду тысяч
(в обратном порядке):

9 \ 999^2 < 100 \ 000 \ 000 \ ;       сумма: 4 + 8 = 12 , у квадрата вдвое больше.

4000^2 = 16 \ 000 000 \ ;       сумма: 4 + 8 = 12 , у квадрата вдвое больше.

3000^2 = 9 \ 000 000 \ ;       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .

1000^2 = 1 \ 000 000 \ ;       сумма: 4 + 7 = 11 , цифр у квадрата: 7 = 4*2–1 .

А теперь всё обобщим на самый общий случай.

Если бы число записывалось единицей с R нолями, то его квадрат содержал бы уже 2R нолей, при этом в исходном числе было бы (R+1) цифр, а в квадрате числа – (2R+1) цифр.

Пусть у нас старший разряд таков, что во всём числе только R цифр, рассмотрим всё, как обычно в обратном порядке:

(  99999 : : : R цифр : : : 99999  )   –   это число на единицу меньше, чем число     (  100000 : : : R нулей : : : 00000  )     , в котором (R+1) цифр.

квадрат числа [(  99999 : : : R цифр : : : 99999  )]    –   это число, меньшее, чем число     (  100000 : : : 2R нулей : : : 00000  )     , в котором (2R+1) цифр.

Значит, квадрат числа (  99999 : : : R цифр : : : 99999  ) содержит ровно 2R цифр, а всего само число и его квадрат содержат 3R цифр.

в числе (  400000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  400000 : : : (R–1) нулей : : : 00000  )]  =
=  (  1600000 : : : (2R–2) нулей : : : 00000  )  содержит 2R цифр, а всего само число и его квадрат содержат 3R цифр.

в числе (  300000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  300000 : : : (R–1) нулей : : : 00000  )]  =
=  (  900000 : : : (2R–2) нулей : : : 00000  )  содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.

в числе (  100000 : : : (R–1) нулей : : : 00000  )  содержится R цифр.

квадрат числа [(  100000 : : : (R–1) нулей : : : 00000  )]  =
=  (  100000 : : : (2R–2) нулей : : : 00000  )  содержит (2R–1) цифр, а всего само число и его квадрат содержат (3R–1) цифр.

И так будет для любого R

R = 1   : : :  сумма: 3R = 3 или (3R–1) = 2 .
R = 2   : : :  сумма: 3R = 6 или (3R–1) = 5 .
R = 3   : : :  сумма: 3R = 9 или (3R–1) = 8 .
R = 4   : : :  сумма: 3R = 12 или (3R–1) = 11 .
R = 5   : : :  сумма: 3R = 15 или (3R–1) = 14 .

  . . .

R = 32   : : :  сумма: 3R = 96 или (3R–1) = 95 .
R = 33   : : :  сумма: 3R = 99 или (3R–1) = 98 .
R = 34   : : :  сумма: 3R = 102 или (3R–1) = 101 .
R = 35   : : :  сумма: 3R = 105 или (3R–1) = 104 .

... и т.д и т.п. ...

Как легко видеть, в этой последовательности:

2, 3,  5, 6,  8, 9,  11, 12,  14, 15 .... 95, 96,  98, 99,  101, 102,  104, 105 ....

пропущены определённые числа. Пропущенные числа:

1, 4, 7, 10, 13, 16 .... 94, 97, 100, 103, 106 ....

подчиняются закону (3R+1).

В самом деле, между предыдущим и последующим значениями, кратными трём, всегда содержатся два целые числа, а искомой суммой, помимо 3R, может быть только одно из них: (3R–1) .

Поэтому, значения, подчиняющиеся закону (3R+1) не могут быть искомым результатом. Так, например, число 99 – кратно трём ( 99 = 3*33 ), а значит, число   100 = 3*33+1   никак не могло бы оказаться в расчётах Лены.

О т в е т : у Лены не могли получиться результаты, подчиняющиеся закону (3R+1) , где R – какое угодно целое число.

ну и, конечно, все результаты Лены могут быть только положительными, поскольку это количества, т.е. натуральные величины.

в частности, у неё не могло получиться число 100.
4,4(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ