(см. объяснение)
Объяснение:
Первый :
Рассмотрим функцию .
Тогда уравнение примет вид .
Заметим, что решающую роль на поведение функции (ее возрастание или убывание) всегда оказывает знак при . Тогда функция убывает на промежутке
, а возрастает на
. Значит единственное решение достигается тогда и только тогда, когда
.
Получили уравнение:
Итого при исходное уравнение имеет единственное решение.
Второй :
Построим график этого уравнения в координатах :
(см. прикрепленный файл)
Тогда ответом будет .
Третий :
Знаем, что при :
Тогда единственное решение возможно, только если .
Получили уравнение:
Так как .
Задание выполнено!