М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
FRIEND151
FRIEND151
07.02.2023 10:41 •  Алгебра

Разложи на множители: (d^10+m^10)^2−(d^10−m^10)^2−d^2m^2 1. d2m2⋅(4d8m8−1) 2. 4d10m10+2m20−d2m2 3. (2d5m5−dm)⋅(2d5m5+dm) 4. m2(4d10m8+2m18−d2m) 5. m2(2m8−d2m) 6. другой ответ 7. d2m2⋅(2d4m4−1)⋅(2d4m4+1)

👇
Ответ:
Vikharevaliza
Vikharevaliza
07.02.2023
РЕШЕНИЕ ВО ВЛОЖЕННОМ ФАЙЛЕ (
4,4(18 оценок)
Открыть все ответы
Ответ:
ffh5
ffh5
07.02.2023

1) Область определения функции и область значений функции.


Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x), при которых функция y = f(x) определена.

Область значений функции - это множество всех действительных значений y, которые принимает функция.


 


2) Нули функции.


Нуль функции – такое значение аргумента, при котором значение функции равно нулю.


 


3) Промежутки знакопостоянства функции.


Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.


 


4) Монотонность функции.


Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.


Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.


 


5) Четность (нечетность) функции.


Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого хиз области определения выполняется равенство f(-x) = f(x). График четной функции симметричен относительно оси ординат.


Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любогох из области определения справедливо равенство f(-x) = - f(x). График нечетной функции симметричен относительно начала координат.


 


6) Ограниченная и неограниченная функции.


Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.


 


7) Периодическость функции.


Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими.


Выбирай из того, что

4,4(37 оценок)
Ответ:
rekiol544
rekiol544
07.02.2023
1. a^2+2ab+3b^2-3a^2-4ab+b^2+2a^2-3ab+4b^2=
Приведем подобные члены. Я их сгруппирую для наглядности:
=a^2+2a^2-3a^2+b^2+3b^2+4b^2+2ab-4ab-3ab=
Различия между ними - это степень и сама буква неизвестного значения: "a" и "b".
Далее просто складываем и вычитаем в зависимости от знака подобные члены. Все упрощение, условно, сводится в 3 действия, так как 3 вида значений:
1) a^2+2a^2-3a^2=3a^2-3a^2=0
2) b^2+3b^2+4b^2=4b^2+4b^2=8b^2
3) 2ab-4ab-3ab=2ab-(4ab+3ab)=2ab-7ab=-5ab - Тут вынес знак минуса за скобку, чтобы было понятно, что разность -4ab-3ab дает сумму с отрицательным знаком.
В итоге записываем полученное выражение:
=8b^2-5ab=
На этом можно остановиться,  можно вынести одинаковые значения за общую скобку. Этим значением является буква b, тогда запись выражения примет вид:
=b(8b-5a)
Но нужно помнить, что когда мы выносим одинаковые члены за скобку, то от чего мы их отделяем - делим на то самое отделяемое значение. Если расписать действие переноса буквы b за скобку по шагам, то будет более понятно:
8b^2-5ab=b( \frac{8b^2}{b}- \frac{5ab}{b})=b(8b^{2-1}-5ab^{1-1})=b(8b-5a)

Решение без пояснений:
a^2+2ab+3b^2-3a^2-4ab+b^2+2a^2-3ab+4b^2=a^2+2a^2-3a^2+b^2+3b^2+4b^2+2ab-4ab-3ab=8b^2-5ab=b(8b-5a)
---------------------------------------------------------------------
2. 0.6xy^2+(2x^3+y^3-(3xy^2-(x^3+2.4xy^2-y^2)))=
Тут самое главное правильно раскрыть скобки с учетом знаков перед ними, а далее все как в первом решении. Начинать раскрытие скобок нужно изнутри, то есть от выражения "-(x^3+2.4xy^2-y^2)"
Распишу раскрытие скобок по действиям:
1) -(x^3+2.4xy^2-y^2)=-x^3-2.4xy^2+y^2
2) -(3xy^2-x^3-2.4xy^2+y^2)=-3xy^2+x^3+2.4xy^2-y^2
3) 0.6xy^2+(2x^3+y^3-3xy^2+x^3+2.4xy^2-y^2)=0.6xy^2+2x^3+y^3-3xy^2+x^3+2.4xy^2-y^2
В итоге получили выражение под пунктом 3.
Далее, приводя подобные члены получим:
=3x^3+y^3-y^2
Далее можем также вынести за скобку одинаковые члены, но в этом нет смысла, так как не принесет упрощения.

Решение без пояснений:
0.6xy^2+(2x^3+y^3-(3xy^2-(x^3+2.4xy^2-y^2)))=0.6xy^2+2x^3+y^3-3xy^2+x^3+2.4xy^2-y^2=3x^3+y^3-y^2
4,6(77 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ