Найдем ее минимальное и максимальное значения на промежутке [-2; 7].
Порядок решения такой - для начала найдем критические точки функции, и затем сравним значения функции от критического аргумента и границ промежутка - этого будет достаточно.
Находим производную функции:
y' = 2 * x - 6;
y' = 0;
x = 3 - критическая функция. Находим значения функции:
Найдем ее минимальное и максимальное значения на промежутке [-2; 7].
Порядок решения такой - для начала найдем критические точки функции, и затем сравним значения функции от критического аргумента и границ промежутка - этого будет достаточно.
Находим производную функции:
y' = 2 * x - 6;
y' = 0;
x = 3 - критическая функция. Находим значения функции:
-3d - 2 + d - 1 < 0
-2d - 3 < 0
-2d < 3
d > -3/2
d > -1,5
d принадлежит промежутку (-1,5 ; +∞)
ответ: (-1,5 ; +∞)