х+1 ≤ 0 х²+2x ≤ 0 Вся штука в том, что надо решить каждое неравенство отдельно, а потом оба решения показать на одной числовой прямой и увидеть решение системы а) х +1 ≤ 0 х ≤ -1 -∞ -1 +∞
(-∞; -1] б) х² + 2х ≤ 0 это квадратное неравенство. корни 0 и -2. через эти точки проходит парабола х² +2х -∞ -2 0 +∞ + - + это знаки х² + 2х
х∈ [ -2; 0] теперь ищем общее решение -∞ -2 -1 0 +∞ это решение 1-го неравенства это решение 2-го неравенства ответ: х ∈[-2; -1]
Х- скорость автомобиля 150/х - время за которое проедет автомобиль весь путь х+20 - скорость мотоциклиста 150/(х+20) - время за которое проедет мотоциклист переведём 1ч15м в минуты=1*60+15=75мин составим уравнение: 150/(х+20)-150/х=75 общий знаменатель х(х+20) получим квадратное уравнение: -1,25х^2-25х-3000=0 решаем через дискриминант д=625+4*1,25*3000=15625 х1=(-25-125)/2,5 - не имеет значения, так как скорость не может быть отрицательной х2=(-25+125)/2,5=40км/ч - скорость автомобиля значит скорость мотоциклиста 40+20=60км/ч ответ: скорость автомобиля=40км/ч и скорость мотоциклиста = 60км/ч
х²+2x ≤ 0
Вся штука в том, что надо решить каждое неравенство отдельно, а потом оба решения показать на одной числовой прямой и увидеть решение системы
а) х +1 ≤ 0
х ≤ -1
-∞ -1 +∞
(-∞; -1]
б) х² + 2х ≤ 0
это квадратное неравенство. корни 0 и -2. через эти точки проходит парабола х² +2х
-∞ -2 0 +∞
+ - + это знаки х² + 2х
х∈ [ -2; 0]
теперь ищем общее решение
-∞ -2 -1 0 +∞
это решение 1-го неравенства
это решение 2-го неравенства
ответ: х ∈[-2; -1]