Объяснение:
1)5х+3х=14+0
8х=14
Х=14 : 8
Х=1,75
2)2у+у=2+4
3у=6
У=6 : 3
У=2
3)первое уравнение домножаем на 2, получается :
8х-10у=12
2х+10у=21
(У сокращаются), остаётся:
8х+2х=12+21
10х=33
Х=3,3
Ищем у:
2х+10у=21
Подставляем найденное значение х
2×3,3+10у=21
6,6+10у=21
10у=21-6,6
10у=14,4
У=14,4 : 10
У=1,44
4) 2х-у=3
х-2,5у=10
Домножаем второй уравнение на ( -2)
2х-у=3
- 2х-5у= -20
Иксы сокращаются , остаётся
6у= -17
У= - 17 : 6
У= - 2,83
Ищем х :
Подставляем найденное значение у в первое уравнение:
2х-(-2,83)=3
2х+2,83=3
2х= 3-2,83
2х=0,17
Х=0,085
5)-
6)-
Поставим перед собой задачу: пусть нам надо решить целое рациональное неравенство с одной переменной x вида r(x)<s(x) (знак неравенства, естественно, может быть иным ≤, >, ≥), где r(x) и s(x) – некоторые целые рациональные выражения. Для ее решения будем использовать равносильные преобразования неравенства.
Перенесем выражение из правой части в левую, что нас приведет к равносильному неравенству вида r(x)−s(x)<0 (≤, >, ≥) с нулем справа. Очевидно, что выражениеr(x)−s(x), образовавшееся в левой части, тоже целое, а известно, что можно любоецелое выражение преобразовать в многочлен. Преобразовав выражение r(x)−s(x) в тождественно равный ему многочлен h(x) (здесь заметим, что выражения r(x)−s(x) иh(x) имеют одинаковую область допустимых значений переменной x), мы перейдем к равносильному неравенству h(x)<0 (≤, >, ≥).
В простейших случаях проделанных преобразований будет достаточно, чтобы получить искомое решение, так как они приведут нас от исходного целого рационального неравенства к неравенству, которое мы умеем решать, например, к линейному или квадратному. Рассмотрим примеры.
5*х=2*(х+6) 5*х=2*х+12 5*х-2*х=12 3*х=12 х=4 км/ч скорость туриста пешком.
5*4=20 км расстояние от турбазы до станции.