Объяснение:
Чтобы решить эту задачу, нужно знать как минимум 2 операции с матрицами:
Сложение/вычитание матриц. Если у тебя есть матрица A с элементами (т.е. на i строке j столбца находится число ), и некоторая другая матрица той же размерности B с элементами , то в итоговой матрице C = A + B элементы , с вычитанием все то же самое, только разность a и b. На практике это выглядит как сумма (или разность) соответствующих чиселУмножение матриц на некоторую константу. Если умножать матрицу A с элементами на некоторое постоянное число C, то C*A = , т.е. умножаете это число на каждый элемент матрицы.Теперь давайте найдем по условию 3A
Теперь 2B:
Теперь поэлементно из одного вычитаем другое:
Объяснение:
1/(a+b)-1/(b-a)-2b/(a^2-b)
Приводим выражение к общему знаменателю, общим знаменателем является выражение (a+b)*(b-a)*(a^2-b):
Дополнительный множитель для первой дроби: (a^2-b)*(b-a)
Дополнительный множитель для второй дроби: (a+b)*(a^2-b)
Дополнительный множитель для третьей дроби: (a+b)*(b-a)
В итоге:
((a^2-b)*(b-a)-(a+b)*(a^2-b)-(a+b)*(b-a))/((a+b)*(b-a)*(a^2-b))=(a^2b-a^3-b^2+ab-(a^3-ab+a^2b-b^2)-(ab-a^2+b^2-ab))/((a+b)*(b-a)*(a^2-b))=(a^2b-a^3-b^2+ab-a^3+ab-a^2b+b^2+a^2-b^2)/((a+b)*(b-a)*(a^2-b))=(-a^3+ab-a^3+ab+a^2-b^2)/((a+b)*(b-a)*(a^2-b))=(-2a^3+2ab+a^2-b^2)/((a+b)*(b-a)*(a^2-b))=-2a(a^2+b)+(a-b)*(a+b)/((a+b)*(b-a)*(a^2-b))