
Объяснение:
Решая 6- задания, Юрий ежеминутно зарабатывает:
: 6 минут =
При решении 8- заданий, Юрий ежеминутно зарабатывает:
: 9 минут = 8/
а при решении 10- задач:
: 15 минут = 10/15 = 2/
Таким образом, в течение 45 минут максимальное количество может быть получено при решении максимально возможного количества 6- заданий, а в оставшееся время - 8- заданий.
Пусть х - количество 6- заданий, у - количество 8- заданий, тогда лимит времени, которым располагает Юрий, равен:
6·х + 9·у = 45 минут
Так как 6х не кратно 45, то принимаем у = 1 (минимальное значение 8- заданий), тогда х = (45 - 9) : 6 = 36 : 6 = 6 заданий.
Следовательно, наибольшее количество , которое может набрать Юрий за первые 45 минут работы, равно:
6 · 6 + 8 · 1 = 36 + 8 =
ответ:
По определению, 
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение 
2) 

А значит, если взять
(*),
. И правда: 
(*) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4) 


А значит, если взять
(**),
. И правда: ![\dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|](/tpl/images/3820/0626/49458.png)
(**) Очевидно, что для любого допустимого значения
выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда 
4)

___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 