М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
375196albert
375196albert
11.08.2021 05:01 •  Алгебра

Начертите график функции f (x) =x^2+4x+4

👇
Ответ:
Решение на фотографии
Начертите график функции f (x) =x^2+4x+4
4,7(90 оценок)
Открыть все ответы
Ответ:
milka294
milka294
11.08.2021
найдите точку минимума функции y= -(x+2)^2(x+4)^2

 y= -(x+2)²(x+4)² =  - ( (x+2)(x+4) )²  =  - ( x² +6x+8 )²;    || (x+2)(x+4) ⇄  x² +6x+8 ||
 y ' = -2(x² +6x+8) *(x² +6x+8 ) ' =-2(x² +6x+8) *(2x +6) = - 4(x+2)(x+4)(x +3) .
 y '  = - 4(x+4)(x+3)(x+2) 
  y '         +                   -                    +                    -
(-4) (-3) (-2)
y         ↑                ↓ (убыв.)      ↑  (возр.            ↓

ответ :x = -3 точка минимума .

* * * (знаки(условно)   ↑ - функция возрастает ,  ↓ -  функция убывает * * *
4,5(45 оценок)
Ответ:
ВанькаНер
ВанькаНер
11.08.2021

\left(\frac{(4-\pi)\sqrt2}{8-4\sqrt2};\ \frac{\frac\pi2-1}{8 - 4\sqrt2}\right)\!.

Объяснение:

Область D, задающая плоскую фигуру, координаты центра тяжести которого требуется найти, задана такими кривыми:

y = \sin x;\\y = 0;\\x = \frac{\pi}{4}.

Известны ограничения сверху и снизу на y, а для x только сверху. Тогда ограничение снизу будет граничным с остальными:

\sin x = 0;\\x = \arcsin 0;\\x = 0.

Получили четвёртое и последнее ограничение для области. Тогда область D задана такими кривыми:

y = \sin x;\\y = 0;\\x = \frac{\pi}{4};\\x = 0.

Переведём условия в вид неравенств:

D = \left \{ {{0\leq y \leq \sin x;} \atop {0 \leq x \leq \frac\pi 4.}} \right.

Поскольку левые части неравенств области нулевые, можем сразу вычислить площадь области, не используя двойной интеграл, а вместо него использовав одномерный определённый интеграл, в качестве функции использовав верхний предел y, а в качестве пределов интегрирования — части неравенства для x.

S_D = \int\limits_0^\frac\pi4\sin x \, \text{d}x = (-\cos x)|_0^\frac\pi4 = -\cos\frac\pi4 - (-\cos 0) = -\frac{\sqrt 2}2 + 1 = 1 - \frac{\sqrt 2}2.

Как известно, если I — точка центра тяжести, то I = (x_I,\ y_I), и они в свою очередь:

x_I = \frac{\iint_D x\, \text{d}x\, \text{d}y}{S};\\y_I = \frac{\iint_D y\, \text{d}x\, \text{d}y}{S}.

Найдём обе координаты точки центра тяжести.

Начнём с абсциссы:

x_I = \frac{\iint_D x\, \text{d}x\, \text{d}y}{S} = (*).\\\\\iint_D x\, \text{d}x\, \text{d}y = \int\limits_0^\frac\pi4x\, \text{d}x \int\limits_0^{\sin x} \, \text{d}y \!:\\\int\limits_0^{\sin x} \, \text{d}y = (y)|_0^{\sin x} = \sin x.\\\int\limits_0^\frac\pi4 x \sin x \, \text{d}x = (**)\\\int x \sin x \, \text{d} x = -x\cos x + \int \cos x \, \text{d} x = \sin x - x \cos x + C.\\u = x;\ \ \ \ \text{d}v = \sin x \, \text{d}x\\\text{d}u = \text{d}x;\ v = \int \sin x \, \text{d} x = -\cos x + C.

(**) = (\sin x - x \cos x)|_0^\frac\pi4 = (\sin \frac\pi 4 - \frac\pi 4 \cos \frac\pi 4) - (\sin 0 - 0 \cos 0) =\\= \frac{\sqrt2}2 - \frac{\pi\sqrt{2}}{4\cdot 2} = \frac{4\sqrt2 - \pi \sqrt2}{8} = \frac{(4 - \pi)\sqrt2}{8}.\\\\(*) = \frac{\frac{(4 - \pi)\sqrt2}{8}}{1 - \frac{\sqrt2}2} = \frac{(4-\pi)\sqrt2}{8-4\sqrt2}.

Теперь ордината:

y_I = \frac{\iint_D y\, \text{d}x\, \text{d}y}{S} = (*).\\\\\iint_D y\, \text{d}x\, \text{d}y = \int\limits_0^\frac\pi4 \, \text{d}x \int\limits_0^{\sin x} y \, \text{d} y\!:\\\int\limits_0^{\sin x} y \, \text{d}y = (\frac{y^2}2)|_0^{\sin x} = \frac12 \sin^2 x.\\\int\limits_0^{\frac\pi4} \frac 12 \sin^2 x \, \text{d}x = (**)\\\int \frac12 \sin^2 x \, \text{d}x = \frac 14 \int 1 - \cos 2x \, \text{d}x = \frac14(\int \, \text{d}x - \int \cos 2x \, \text{d}x) = (***)

\int \cos 2x \, \text{d} x = \frac 12 \int \cos 2x \, \text{d}(2x) = \frac12 \sin 2x + C.\\\int \text{d}x = x + C.\\(***) = \frac14 (x - \frac 12 \sin 2x) + C.\\(**) = (\frac 14 (x - \frac 12 \sin 2x))|^\frac\pi4_0 = (\frac 14(\frac\pi4 - \frac12 \sin 2 \cdot \frac\pi4)) - (\frac 14 (0 - \frac12 \sin 2 \cdot 0)) =\\= \frac 14 (\frac\pi4 - \frac12 \sin \frac\pi2) = \frac 14 (\frac\pi 4 - \frac12) = \frac{\frac\pi2-1}{8}.

(*) = \frac{\frac{\frac\pi2-1}{8}}{1 - \frac{\sqrt2}2} = \frac{\frac\pi2-1}{8 - 4\sqrt2}.

ответом будут найденные координаты, x_I = \frac{(4-\pi)\sqrt2}{8-4\sqrt2} и y_I = \frac{\frac\pi2-1}{8 - 4\sqrt2}.

4,4(29 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ