∉ и И
Объяснение:
Во первых множество всех натуральных чисел обычно обозначают буквой N.
2. Если к натуральным числам присоединить число 0 и все целые отрицательные числа: −1,−2,−3,−4... — то получится множество целых чисел. Это множество обычно обозначают буквой Z.
3. Если к множеству целых чисел присоединить все обыкновенные дроби, то получится множество рациональных чисел. Это множество обычно обозначают буквой Q.
4. ∈ — знак принадлежности (элемент принадлежит множеству).
5. ∉ — элемент не принадлежит множеству.
По условию получаем систему уравнений (если х×у=-75), то:
1-е число-х
2-е число-у
{х+у=20
{х×у=-75
х=(20-у)
(20-у)×у=-75
-у²+20у=-75
у²-20у-75=0
D=(-(-20))²-4×1×(-75)=400+300=700
у1=(-(-20)-√700)/2×1=(20-√700)/2=(20-26,46)/2=-6,46/2=-3,23
у2=(-(-20)+√700)/2×1=(20+26,46)/2=46,46/2=23,23
х1=20-y1
x1=20-(-3,23)
x1=23,23
x2=20-y2
x2=20-23,23
x2=-3,23
проверка: х1×у1=-75
23,23×(-3,23)=-75
-75,0329≈-75
ответ: (23,23;-3,23) и (-3,23;23,23)
если (х×у=75), то
{х+у=20
{х×у=75
х=(20-у)
(20-у)×у=75
20у-у²=75
у²-20у+75=0
D=(-(-20))²-4×1×75=400-300=100
y1=(-(-20)-√100)/2×1=(20-10)/2=10/2=5
y2=(-(-20)+√100)/2×1=(20+10)/2=15
x1=20-y1
x1=20-5
x1=15
x2=20-y2
x2=20-15
x2=5
ответ: (15;5) и (5;15).
m>n
К примеру:
1) m/n < 1. Возьмем банальные числа 4 и 2. 4/2=2 2>1 => 1) не подходит.
2)(m-n)/n<0. Возьмем m=4, n=2. (4-2)/2=2/2=1 1>0 => 2) не подходит.
3)m/n>1. Возьмем m=1,n=-1. 1/-1=-1 -1<1 3) не подходит.
4)m-n>5. Возьмем m=3,n=1. 3-1=2 2<5 4)не подходит.