7. РЕШЕНИЕ: Всего существует 90 двузначных чисел. Тогда в испытании "выбор наугад двузначного числа" существует 90 равновозможных вариантов. Среди двузначных чисел есть 7 (13, 26, 39, 52, 65, 78, 91) чисел, делящихся нацело на 13. Следовательно, к наступлению события а - "выбранное наугад двузначное число делится нацело на 13" - приводят 7 благоприятных результатов. Тогда Р(А) =7/90≈0,078
8. Всего вариантов - 40. Благоприятных результатов - 27 (т.к. от 1 до 40 существует 13 чисел, в которых есть цифра "3" => 40-13=27) P=27/40=0,0675
9. 1) Всего вариантов - 24. Благоприятных результатов - 4 (6, 12, 18, 24). P=4/24≈0,017.
2) Всего вариантов - 24. Благоприятных результатов - 13 (т.к. от 1 до 24 содержится 11 чисел, кратных 3 и 5 => 24-11=13). P=13/24≈0,542
Объяснение:
1. Постройте график функции y=2x-1. По графику найдите: а) значения функции при значениях аргумента, равных -2;0;3; б)
значения аргумента, при которых значения функции равны 3;7; в) найдите точку пересечения данной прямой с прямой, заданной уравнением x=4
Функция у = 2х - 1 является линейной функцией, то есть графиком данной функции будет прямая. Для построения прямой достаточно двух точек.
х = 1; у = 2 * 1 - 1 = 1. Точка (1; 1).
х = 5; у = 2 * 5 - 1 = 9. Точка (5; 9).
Чертим координатную плоскость, ставим точки, проводим прямую.
а) Значения функции - это значение у, значение аргумента - это значение х. Находим точки -2, 0 и 3 на оси х, мысленно проводим вертикальную прямую и определяем координату у в точке на прямой.
х = -2; у = -5.
х = 0; у = -1.
х = 3; у = 5.
б) Находим точки 3 и 7 на оси у, мысленно проводим горизонтальную прямую, определяем координату х на прямой.
у = 3; х = 2, точка (3; 2).
у = 7; х = 4.
в) Прямая х = 4 - это вертикальная прямая, пересекающая ось х в точке 4. Чертим данную прямую, определяем координаты точки пересечения. Точка (4; 7)
4x-2x-14=6-2x
4x-2x+2x=6+14
4x=20
x=20÷4
x=5