М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mmmmm30
mmmmm30
24.03.2022 01:36 •  Алгебра

При каких значениях  a функция

1) y=a²/x является убывающей на промежутке (0; +∞)

2) y=7-2a/x является возрастающей на промежутке (0; +∞)

👇
Открыть все ответы
Ответ:
Olga2907
Olga2907
24.03.2022
y''+3y'=9x
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о.  + уч.н.

Найдем уо.о. (общее однородное)
y''+3y'=0
Применим метод Эйлера
Пусть y=e^{kx}, тогда подставив в однородное уравнение, получаем характеристическое уравнение
k^2+3k=0
Корни которого k_1=-3;\,\,\,\, k_2=0
Тогда общее решение однородного уравнения будет
y_{o.o.}=C_1y_1+C_2y_2=C1e^{-3x}+C_2

Найдем теперь уч.н.(частное неоднородное)
f(x)=9x\cdot e^{0x} отсюда \alpha=0;\,\,\,\,\, P_n(x)=9x;\,\,\, n=1
где P_n(x) - многочлен степени х

Сравнивая \alpha с корнями характеристического уравнения  и, принимая во внимания что n=1 , частное решение будем искать в виде:
уч.н. = x e^{0x}(A+Bx)

Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
y'=A+2Bx\\ \\ y''=(A+2Bx)'=2B

Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х

2B+3(A+2Bx)=9x\\ 2B+3A+6Bx=9x\\ \\ \displaystyle\left \{ {{2B+3A=0} \atop {6B=9}} \right. \Rightarrow \left \{ {{A=-1} \atop {B= \frac{3}{2} }} \right.

Тогда частное решение неоднородного будет иметь вид

уч.н. = \dfrac{3x^2}{2}-x

Запишем общее решение исходного уравнения

Y_{O.H}= \dfrac{3x^2}{2}-x +C_1e^{-3x}+C_2 - ответ
4,5(22 оценок)
Ответ:
елена1810
елена1810
24.03.2022
       ПодпискаЦветной журнал с электронными приложениями;Бумажные и электронные версии;Скидки постоянным подписчикам.Вы можете ознакомиться с номером журнала.Оформить подписку"Многочлены и действия над ними". Алгебра. 7-й класс Грудачева Александра Николаевна, учитель математикиРазделы: Преподавание математики Цели: обобщение и закрепление пройденного материала: повторить понятие многочлена, правило умножения многочлена на многочлен и закрепить это правило в ходе выполнения  тестовой работы, закрепить навыки решения уравнений и задач с уравнений.Оборудование: плакат «Кто смолоду делает и думает сам, тот и становится потом надёжнее, крепче, умнее» (В. Шукшин). Кодоскоп, магнитная доска, кроссворд, карточки-тесты.План урока.1. Организационный момент.
2. Проверка домашнего задания.
3. Устные упражнения (разгадывание кроссворда).
4. Решение упражнений по теме.
5. Тест по теме: « Многочлены и действия над ними» (4 варианта).
6. Итоги урока.
7. Домашнее задание.Ход урокаI. Организационный момент Учащиеся класса делятся на группы по 4-5 человек, выбирается старший в группе.II. Проверка домашнего задания. Домашнее задание учащиеся готовят на карточке дома.  Каждый ученик проверяет свою работу через кодоскоп. Учитель предлагает оценить домашнюю работу самому ученику и поставит оценку в ведомости, сообщая критерий оценки: «5» ─ задание выполнено верно и самостоятельно; «4» ─ задание выполнено верно и полностью, но с родителей или одноклассников; «3» ─ во всех остальных случаях, если задание выполнено. Если задание не выполнено, можно поставить прочерк.III. Устные упражнения.1) Для повторения теоретических вопросов учащимся предлагается кроссворд. Кроссворд решают группой устно, и ответы дают учащиеся из разных групп. Выставляем оценки: «5» ─ 7 верных слов, «4» ─ 5,6 верных слов, «3» ─ 4 верных слова.Вопросы для кроссворда:  (см. Приложение 1)Свойство умножения, используемое при умножении одночлена на многочлен разложения многочлена на множители; равенство, верное при любых значениях переменной; выражение, представляющее собой сумму одночленов; слагаемые, имеющие одну и ту же буквенную часть; значение переменной, при котором уравнение обращается в верное  равенство; числовой множитель у одночленов.2) Выполните действия:а) (3х – 5у) + (4х – 3у)
в) 5а2(4а – 2)
б) (6а ─  4b) – (5а + b)
г) (2а – 3)(4 – а)IV. Письменные упражнения по теме: « Многочлены и действия над ними».1. Выполните действия:а) –5а(а2 – 3а – 4 );
б) (m ─ 2n)(m + 2n─1);
в) (5b – 1)(b2 – 5b + 1);
г) (а3 – а2 + а – 1)(а + 1).2. Решите уравнения:а) 3х2 – (3х + 2)(х – 1) = 8
б) (3х – 2)(2х + 3) – (6х2 – 85) = 99
в) (1 – х)(х + 4) + х(х +4) = 0ответ: х = 6.
ответ: х = 4.
ответ: х = –4.
4,7(49 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ