Сначала периметр. Периметр параллелограмма равен удвоенной сумме его смежных сторон, т.е. P = 2(a + b) 10 < a < 11 умножаем на 2: 20 < 2a < 22 (1) 5 < b < 6 умножаем на 2: 10 < 2b < 12 (2) Складываем неравенства (1) и (2) 20 + 10 < 2a + 2b < 22 + 12 30 < 2a + 2b < 34 Значит, 30 < P < 34.
Площадь можно оценить по-разному: 1) Высота h опущена на сторону a. S = ah. Умножаем неравенство с a на неравенство с h: 10·3 < ah <4·11 30 < ah < 44 Значит, 30 < S < 44.
2) Высота опущена сторону b. S = bh. Умножаем неравенство с b на неравенство с h: 5·3 < bh < 6·4 15 < bh < 24 Значит, 15 < S < 24.
Пересечение с осью абсцисс определяется равенством y(x) = 0.
8x³-1=0 8x³=1 x³=1/8 x=1/2
Уравнение касательной - y=kx+b. Коэффициент k соответствует значению первой производной в точке касания. Параметр b определяется фактом того, что в точке касания значение касательной равно значению функции в этой точке, т.е. 0.
y'(x)=8*3x²=24x² y'(1/2)=24(1/2)²=24/4=6
Значит, уравнение касательной равно 6x+b. В точке x=1/2 ее значение равно 6*(1/2)+b = 3+b При этом оно должно быть равно 0: 3+b=0 b=-3
Т.о., уравнением касательной в точке пересечения функции с осью абсцисс, является y=6x-3
Решение Чтобы избавиться от знака корня, возведем обе части во вторую степень и получим слева просто x+3, а справа сокращенное умножение квадрата суммы:
Приведем подобные члены и вычислим квадратное уравнение, приравняв результат к нулю:
График функции - парабола. Ветви вниз, так как коэффициент при .
Найдем корни квадратного уравнения:
Корни квадратного уравнения - точки пересечения с осью X. Так как условие неравенства - больше или равно, то интервал включает в себя значения корней уравнения. ответ: а) [-3;-2]
Периметр параллелограмма равен удвоенной сумме его смежных сторон, т.е. P = 2(a + b)
10 < a < 11 умножаем на 2:
20 < 2a < 22 (1)
5 < b < 6 умножаем на 2:
10 < 2b < 12 (2)
Складываем неравенства (1) и (2)
20 + 10 < 2a + 2b < 22 + 12
30 < 2a + 2b < 34
Значит, 30 < P < 34.
Площадь можно оценить по-разному:
1) Высота h опущена на сторону a.
S = ah.
Умножаем неравенство с a на неравенство с h:
10·3 < ah <4·11
30 < ah < 44
Значит, 30 < S < 44.
2) Высота опущена сторону b.
S = bh.
Умножаем неравенство с b на неравенство с h:
5·3 < bh < 6·4
15 < bh < 24
Значит, 15 < S < 24.