Пусть первое слагаемое А. Тогда второе равно 2119-А. Чтобы разность (2119-А)-А=2119-2А была наибольшей, А должно быть наименьшим.
1) Если А - однозначное, т.е. 1≤А≤9, то сумма цифр числа 2119-А равна 2+1+1+(9-А), а сумма цифр числа А равно самому А. По условию должно быть 2+1+1+(9-А)=А, т.е. 13=2А, что невозможно. Значит А не может быть однозначным.
2) Если А=10+х, где 0≤х≤9 (т.е. 10≤А≤19), то сумма цифр числа 2119-А равна 2+1+0+(9-x)=1+x, откуда 2х=11, т.е. А не может быть двузначным, начинающимся с 1.
3) Если А=20+х, где 0≤х≤9 (т.е. 20≤А≤29), то 2119-А=2099-х, а его сумма цифр равна 2+0+9+(9-х)=2+х, откуда х=9. Итак, 29+2090=2119 и сумма цифр обоих слагаемых равна 11. Т.к. мы перебрали все возможные варианты А меньшие 29, то 29 - минимально возможное слагаемое, а значит разность 2090-29=2061 - наибольшая.
Требуется получить трехзначное число, записанное тремя одинаковыми цифрами, обозначим цифру, которая повторяется - k, т.о. число будет записываться так kkk Разложив это число на разрядные слагаемые получим сумму: 100 k + 10k + k = 111*k, где k = 1, 2,,9
Последовательный ряд натуральных чисел, начиная с 1 является возрастающей арифметической прогрессией с первым членом а1 = 1 и разностью d = 1 . А найденная сумма 111*k есть Sn - сумма n-первых членов арифметической прогрессии, которые надо сложить, чтобы получить наше трехзначное число. Тогда по формуле суммы n-первых членов арифметической прогрессии Sn = ( 2а1 + (n-1)*d / 2 ) * n
Подставим сюда числовые значения Sn, а1 и d и найдем n :
111*k = ( 2*1 + (n-1)*1 / 2 ) * n 111*k = ( 2 +n-1 / 2 ) * n 111*k = ( 1 +n / 2 ) * n 111*k = n + n^2 / 2 222*k = n + n^2 n^2 + n - 222*k = 0 D = 1 + 4*222*k = 1 + 888*k Т.к. n - натуральное число, то SQRT( D ) должно быть целым, значит число 1 + 888*k должно быть полным квадратом, т.е заканчиваться цифрой 1, 4, 5, 6 или 9. Соответственно 888*k может заканчиваться на 0, 3, 4, 5, 8.
На 3 или 5 888*k не может заканчиваться. Если 888*k заканчивается на 0, то k=5 Если 888*k заканчивается на 4, то k=3 или k=8. Если 888*k заканчивается на 8, то k=1 или k=6.
Т.о. k может быть 1, 3, 5, 6, 8.
Проверим при каком из этих значений 1 + 888*k является квадратом: при k=1 1 + 888*1 = 889 (нет) при k=3 1 + 888*3 = 2665 (нет) при k=5 1 + 888*5 = 4441 (нет) при k=8 1 + 888*8 = 7105 (нет) при k=6 1 + 888*6 = 5329 (да, тогда SQRT( D ) = SQRT( 5329 ) = 73 )
n =( -1 + 73)/2 = 72/2 = 36
ОТВЕТ: нужно сложить 36 последовательных натуральных чисел, начиная с 1, получится число 666.
1) у = Sin x cуществует при любом значении х. Значит, область определения х∈(-∞ ;+∞) Теперь про область значений данной функции. Если вспомнить график (синусоиду) или единичную окружность, то легко увидеть, что для у = Sin x область значений у∈[-1;1] Но в нашем случае в формуле функции стоит -3. Это значит, что каждое значение "у" изменили на -3 Стало: у∈[ -4; -2] 2) у =2 Sin x cуществует при любом значении х. Значит, область определения х∈(-∞ ;+∞) Теперь про область значений данной функции. Если вспомнить график (синусоиду) , то легко увидеть, что для у = 2Sin x область значений у∈[-2;2]. Но в нашем случае в формуле функции стоит ещё +1. Это значит, что каждое значение "у" увеличили на 1. Получим: у∈[ -1; 3] 3) у = Cos 2x cуществует при любом значении х. Но этот косинус стоит под корнем. А корень существует только тогда, когда подкоренное выражение неотрицательно, т.е. 1 - Cos2x ≥ 0 Теперь надо представить график у = Cos 2x. Эта косинусоида "пляшет" в пределах [-1; 1] Если от 1 отнимать все значения косинуса, то будут получаться числа ≥ 0 Вывод: х∈(-∞ ; +∞) Что касается множества значений у, то арифметический квадратный корень из числа- это неотрицательное число. у∈[ 0; +∞)
(2119-А)-А=2119-2А была наибольшей, А должно быть наименьшим.
1) Если А - однозначное, т.е. 1≤А≤9, то сумма цифр числа 2119-А равна 2+1+1+(9-А), а сумма цифр числа А равно самому А. По условию должно быть 2+1+1+(9-А)=А, т.е. 13=2А, что невозможно. Значит А не может быть однозначным.
2) Если А=10+х, где 0≤х≤9 (т.е. 10≤А≤19), то сумма цифр числа 2119-А равна 2+1+0+(9-x)=1+x, откуда 2х=11, т.е. А не может быть двузначным, начинающимся с 1.
3) Если А=20+х, где 0≤х≤9 (т.е. 20≤А≤29), то 2119-А=2099-х, а его сумма цифр равна 2+0+9+(9-х)=2+х, откуда х=9. Итак, 29+2090=2119 и сумма цифр обоих слагаемых равна 11. Т.к. мы перебрали все возможные варианты А меньшие 29, то 29 - минимально возможное слагаемое, а значит разность 2090-29=2061 - наибольшая.