Обозначим тупые углы трапеции как х. Так как меньшее основание и боковая сторона равны, то диагональ образует равнобедренный треугольник. Угол при вершине этого треугольника равен тупому углу трапеции, тоесть х. Обозначим углы при основании треугольника как у и выразим х через у: х=180-2у. Из условия известно, что диагональ образует с боковой стороной угол в 120 градусов, тоесть х=у+120. Теперь приравняем и решим полученное уравнение: 180-2у=у+120 => 3у=60 => у=20. Тогда тупой угол трапеции равен х=20+120=140 градусов. И в конце концов, можем найти острый угол трапеции: 180-140=40. ответ: углы трапеции 140 и 40 градусов
(5х-3)²+(12х+5)²≤(7-13х)²+34х²+17х+410 25х²-30х+9+144х²+120х+25≤49-182х+169х²+34х²+17х+410 169х²+90х+34≤ 203х²-165х+459 169х²-203х²+90х+165х+34-459 ≤ 0 -34х²+255х-425≤0 ( : -17) 2х²-15х+25≥0 D=225-200=25=(5)² x1=(15+5)/4=5 х2=5/2=2,5 2(х-5)(х-2,5)≥0 (:2) (х-5)(х-2,5)≥0 2,55 х + - + нас интересуют только те точки ,где функция принимает положительное значение - это промежутки от -∞ до 2,5 и от 5 до +∞ точки 2,5 и 5 тоже входят , так как неравенство не строгое тогда запишем : х∈(-∞;2,5]U[5;+∞)
√(3-√10)^2 = |3 -√10| = √10 -3