Функция а^x возрастает при а больших 1 и убывает при а меньших 1 a) y=(√7)^x возрастает б) y=(0.4)^x убывает в) y=(3,1)^x возрастает г) y=2^x возрастает д) y=(5/9)^x убывает е) y=(1*1/3)^x =(1/3)^x убывает
1) x(7 - x) > 0 Умножаем на -1, при этом меняется знак неравенства x(x - 7) < 0 По методу интервалов x ∈ (0; 7)
2) x^2*(3 - x)(x + 1) <= 0 Умножаем на -1, при этом меняется знак неравенства x^2*(x - 3)(x + 1) >= 0 x^2 > 0 при любом x =/= 0. Поэтому x = 0 - это решение. Делим на x^2 (x - 3)(x + 1) >= 0 По методу интервалов x ∈ (-oo; -1] U [3; +oo) Добавим решение x=0 и получим: x ∈ (-oo; -1] U [0] U [3; +oo)
Пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
a) y=(√7)^x возрастает
б) y=(0.4)^x убывает
в) y=(3,1)^x возрастает
г) y=2^x возрастает
д) y=(5/9)^x убывает
е) y=(1*1/3)^x =(1/3)^x убывает