Поскольку, по теореме Виетта, х1+х2=5, а х1 * х2=2, то 3х1+3х2=3*(х1+х2)=3*5=15, и 3х1*3х2=9Х1*х2=9*2=18. Следовательно, новое квадратное уравнение будет иметь вид: х²-15х+18=0
Из любых трёх точек, не расположенных на одной прямой, можно посторить треугольник. Раз все точки на окружности, то никакие три не могут быть на одной прямой (точки вероятно не совпадают друг с другом ни одна) . Тогда берём 1 и 2 точки. Третьей могут быть 3, 4, 5, 6, 7. Итого можно построить 5 треугольников. Затем берём 1 и 3. Третьей могут быть 2, 4, 5, 6, 7. Снова 5 штук. Всего возможно комбинаций: 1-2-3 1-2-4 1-2-5 1-2-6 1-2-7 1-3-2 1-3-4 1-3-5 1-3-6 1-3-7 1-4-2 1-4-3 1-4-5 1-4-6 1-4-7 1-5-2 1-5-3 1-5-4 1-5-6 1-5-7 1-6-2 1-6-3 1-6-4 1-6-5 1-6-7 1-7-2 1-7-3 1-7-4 1-7-5 1-7-6 Итого только с единицей 30 штук. Но надо учесть, что 1-2-3 и 1-3-2 это по сути одинаковые треугольники. Потому один из них вычёркиваем. То есть по такой схеме нам подойдут только те треугольники, у которых цифры в порядке возрастания идут. Тогда все варианты: 123 124 125 126 127 134 135 136 137 145 146 147 156 157 167 234
А) Складываем отношения углов: 1+2+3=6 Составляем пропорцию: 6=180град. (т.к. сумма углов треугольника = 180 град.) 1=Х град. (1 здесь мера угла 1) Отсюда, Х=180 : 6 = 30 (град), т.е. угол 1 = 30 град. ответ: угол 1 = 30 градусов
Б) Сумма внешних углов треугольника, взятых по одному при каждой вершине, равна 360 град. Т.к. углы 5 + 6 = 220 град., то 360 - 220 = 140 (град) - это градусная мера внешнего угла 4 при вершине А. Отсюда, угол 1 = 180 град. - угол 4 = 180 - 140 = 40 (град.) - градусная мера угла 1 (т.к. угол 4 и угол 1 - смежные). ответ: угол 1 = 40 градусов
Следовательно, новое квадратное уравнение будет иметь вид:
х²-15х+18=0