М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
PavelOlga
PavelOlga
06.01.2023 23:17 •  Алгебра

Решить систему уравнений : х/3=-(y/4), x+y=5

👇
Ответ:
elichev3
elichev3
06.01.2023
4x=3-y
x=5-y
4(5-y)=-3y
20-4y=-3y
20=4y-3y
y=20
x=5-20=-15
ответ (-15;20)
4,7(98 оценок)
Открыть все ответы
Ответ:
ilike1
ilike1
06.01.2023
 Пусть скорость второго  автомобилиста равна v км/ч,
тогда  скорость первого равна  v+30 км/ч 
Через 2 часа после начала движения расстояние между первой  машиной и пунктом А было 2(v+30), а после того, как он  повернул и проехал час в обратном направлении, оно стало  равно расстоянию, которое он проезжает за 1 час, т.е его  скорости (v+30) км  
Второй двигался 2+1=3 часа до времени, когда расстояние  между машинами 
 стало 290 км 
Вторая машина, двигаясь без остановки, проехала 3v км,
и от  пункта В она была на на этом расстоянии (S=vt) 
 Итак, первая машина была от А на расстоянии v+30 км,
вторая  от пункта В была на расстоянии 3 v, и между ними был  
промежуток пути длиной 290 км.  
Составим и решим уравнение.  
v+30+290 +3v =600 
4v= 280
 v=70 км/ч - скорость второй машины 
v+30=100 км/ч (скорость первой машины)
Проверка: 
100+290+3*70=600 км 
4,7(6 оценок)
Ответ:
4755Kristina501
4755Kristina501
06.01.2023
Уравнение любой касательной к любому графику находится по формуле:
f'(x_{0})*(x-x_{0})+f(x_{0})
Где f'(x_{0}) производная функции в данной точке. А x_{0} точка касания по иксу.

1)
Поначалу у функции y=x^{0,2} мы должны найти производную общего типа этой функции.
Это степенная функция, а производная любой степенной функции находится следующей формулой:
f'(x)=nx^{n-1} - где n это степень.
В нашем случае:
f'(x)=0,2x^{0,2-1}= 0,2x^{-0,8}
Так, нашли производную общего случая.

Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y=0,2x_{0}^{-0,8}*(x-x_{0})+x_{0}^{0,2}

2) 
Опять же, найдем производную 
y=\frac{1}{3}^{(x-2)-1}
f'(x)=(x-3)x^{(x-4)}
Так как, точки касания не даны, мы запишем нахождение касательной в любой точке этой функции:
y= (x_{0}-3)x_{0}^{(x_{0}-4)}*(x-x_{0})+(1/3)^{(x_{0}-3)}

То есть, берешь любой икс, и вставляешь в выражение касательной вместо x_{0} и получаешь уравнение касательной.

Это и есть окончательные ответы. 
Если что-то не правильно, то это значит что вы не правильно написали условие.
4,6(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ