Если ветви параболы направлены вниз, то квадратичная функция у=ах²+bx+c в вершине параболы принимает наибольшее значение и коэффициент при х² меньше 0, то есть а<0.
Координаты вершины х(верш)= -b/2a
y(верш)=ах²(верш)+bx(верш)+с=a(-b/2a)²+b(-b/2a)+c
x(верш)=-(а-3)/2а
а(а-3)² (а-3)² (а-3)² (а-3)²
у(верш)= - +1=4 , - - 3=0 ,
4а² 2а 4а 2а
а²-6а+9-2(а²-6а+9)-12а
=0
4а
-а²+6а-9-12а=0
-а²-6а-9=0 , а²+6а+9=0 , (а+3)²=0 , а=-3
усть x расстояние, кот. проходит катер против течения.
Тогда 2,4 x расстояние, кот. проходит катер по течению.
Скорость против течения тогда x/2, а по течению x/2,4.
Зная, что скорость течения 1,5 км/ч, составим уравнение, при этом удвоим скорость течения, чтобы можно было уровнять обе скорости.
Получим: x/2+3=2.4x/4
(x+6)/2=2.4/4 Теперь умножим обе части на 4, получим:
2(x+6)=2.4x
x=30 Это расстояние,кот катер против течения; 2,4*30=72 км-по течению
72/4=18 км/ч скорость по течению, 30/2=15 км/ч скорость против течения
15+1,5=16,5 км/ч собственная скорость катера.