графиком будет гипербола найдем асимптоты: нули знаменателя - вертикальные асимптоты: x^2-4=0 x^2=4 x1=2 x2=-2 x=2 и x=-2 - 2 асимптоты горизонтальные асимптоты - предел функции, при x->+oo или x->-oo y=0 - 1 горизонтальная асимптота у функции нет точек пересечения с осями найдем производную: экстремиумы: -4x=0 x=0 y=-0,5 определим промежутки возрастания/убывания: так как (x^2-4)^2 знак не меняет, можно ее не учитывать, но при x=2 и x=-2 данное выражение не имеет смысла -4x>=0 при x<=0 и x≠-2 -4x<=0 при x>=0 и x≠2 функция возрастает на (-∞;-2)∪(-2;0] и убывает на [0;2)∪(2;+∞) найдем дополнительные точки: x=-3; y=0,4 (-3;0,4) x=3; y=0,4 (3;0,4) x=-1; y=-2/3 (-1;-2/3) x=1; y=-2/3 (1;2/3) строим график(см. приложение )
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
У меня получилось 4 таких числа - 1236, 1248, 1296 и 1326. Это навскидку, может и еще есть. Очевидно, первая цифра 1. Если все цифры различны, то вторая 2 или 3. Если вторая цифра 2, то третья не меньше 3, а последняя четная. Если третья 3, то число делится на 2 и 3, то есть на 6. Последняя 6. 1236 делится на 2,3 и 6. Если третья 4, то последняя 8. 1248 делится на 2, 4 и 8. Третья не может быть 5,6,7,и 8, по разным причинам. Если третья 9, то последняя 6, 1296 делится на 2, 9 и 6. Если вторая 3, то получается 1326 - четное и делится на 6.
графиком будет гипербола
найдем асимптоты:
нули знаменателя - вертикальные асимптоты:
x^2-4=0
x^2=4
x1=2
x2=-2
x=2 и x=-2 - 2 асимптоты
горизонтальные асимптоты - предел функции, при x->+oo или x->-oo
y=0 - 1 горизонтальная асимптота
у функции нет точек пересечения с осями
найдем производную:
экстремиумы:
-4x=0
x=0
y=-0,5
определим промежутки возрастания/убывания:
так как (x^2-4)^2 знак не меняет, можно ее не учитывать, но при x=2 и x=-2 данное выражение не имеет смысла
-4x>=0 при x<=0 и x≠-2
-4x<=0 при x>=0 и x≠2
функция возрастает на (-∞;-2)∪(-2;0]
и убывает на [0;2)∪(2;+∞)
найдем дополнительные точки:
x=-3; y=0,4 (-3;0,4)
x=3; y=0,4 (3;0,4)
x=-1; y=-2/3 (-1;-2/3)
x=1; y=-2/3 (1;2/3)
строим график(см. приложение )