М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

1.110. при каком целом значении п равенство верно для любого х+ 0:
1) х" x = x'; 2) х" : х" = х °; 3) (x)" x = x°; 4) (x)=x - ? ​

👇
Открыть все ответы
Ответ:
huilo4
huilo4
16.04.2020
1) 90 - 1/3x > 91 -1/3x > 91 - 90 -1/3x > 1 1/3x < -1 x < -3 т.к. -3 не входит в решение неравенства, то x = -4 - наибольшее целое его решение. 2) 18 1/9  ≥ 0,2x + 18 18 1/9 - 18  ≥ 0,2x 1/9  ≥ 0,2x 5/9  ≥ x x  ≤ 5/9 0 < 5/9 < 1, значит, x = 0 - наибольшее целое решение неравенства. 3) 30,08 < -8/9x - 1,92 30,08 + 1,92 < -8/9x 32 < -8/9x -4 > 1/9x x < -36 т.к. x = -36 не входит, то x = -37 является наибольшим целым решением неравенства. 
4,6(7 оценок)
Ответ:
оля27102000
оля27102000
16.04.2020
Отыщем область значений указанной функции.
Для этого сначала преобразуем определённым образом подкоренное выражение для удобства: раскроем скобки, затем дважды используем формулу понижения степени, приведя выражение к квадратному трёхчлену относительно некоторой функции.

6 + 2 sin^{2} x - 6sin4x + cos2x + cos 8x = 6 + 1 - cos2x - 6sin4x + cos2x \\ + cos 8x = 7 - 6sin4x + cos8x = 7 - 6sin4x + 1 - 2 sin^{2} 4x = -2 sin^{2} 4x \\ - 6sin 4x + 8
Таким образом, мы смогли привести подкоренное выражение к квадратному трёхчлену относительно sin4x. На всякий случай скажу, что в препоследнем равенстве с формулы понижения степени я выразил квадрат синуса через косинус удвоенного угла.

Теперь всё сводится к нахождению наименьшего и наибольшего значений полученного трёхчлена.  Если мы сделаем замену t = sin 4x, то получаем квадратный трёхчлен
-2 t^{2} - 6t + 8
, ветви соответствующей параболы которого направлены вниз в силу отрицательности коэффициента при квадрате. Найдём её абсциссу оси симметрии:
x_{0} = \frac{-b}{2a} = \frac{6}{-4} = -1,5. Следовательно, квадратичная функция правее оси симметрии монотонно убывает, то есть, при t \ \textgreater \ -1,5. Поэтому большему значению функции соответствует меньшее значение аргумента. В частности, это происходит и на отрезке [-1,1]. Почему этот отрезок важен, так потому, что вспоминаем, что t - это у нас не переменная сама по себе, а синус, который принимает значения именно из указанного отрезка.

Итак, на отрезке [-1,1] квадратный трёхчлен относительно t убывает, поэтому наименьшее его значение достигается в правом конце(в точке 1), а наибольшее - в левом(в точке -1). То есть,
y_{min} = -2 * 1 - 6 * 1 + 8 = 0 \\ y_{max} = -2 * (-1)^{2} - 6 * (-1) + 8 = 12, где y = -2 sin^{2} 4x - 6sin4x + 8.
То есть, E(y) = [0, 12].

А тогда квадратный корень из этого выражения(в силу своей монотонности), даёт [0, \sqrt{12} ].
Теперь считаем, какие целые числа входят в полученную область значений.
0, 1, 2, 3 - и всё. Их ровно 4.
4,6(69 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ