М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
anna1866
anna1866
24.01.2023 00:58 •  Алгебра

С(решить надо с рациональных уравнений): дано: s по течению - 40км s против течения - 6 км на весь путь катер затратил 3 часа. скорость реки - 3 км/ч найти скорость катера.

👇
Ответ:
lanaruden
lanaruden
24.01.2023
Пусть скорость катера - х.    ⇒
40/(x+2)+6/(x-2)=3
40*(x-2)+6*(x+2)=3*(x-2)*(x+2)
40x-80+6x+12=3*(x²-4)
46x-68=3x²-12
3x²-46x+56=0   D=1444
x₁=14   x₂=1¹/₃∉
ответ: скорость лодки 14 км/ч.
4,4(99 оценок)
Открыть все ответы
Ответ:
Bananchik26
Bananchik26
24.01.2023
(a-1)x^2-2x-a\ \textgreater \ 0
Если a=1, то получим линейное неравенство:
-2x-1\ \textgreater \ 0
\\\
x\ \textless \ - \frac{1}{2}
Полученный промежуток не включает в себя заданыый x\ \textgreater \ 3.
Рассматриваем случай, когда a \neq 1 - имеем квадратное неравенство.
Заданное неравенство ">0", в зависимости от знака старшего коэффициента общие решения неравенства можно записать в виде:
 - если старший коэффициент больше 0: x\in(-\infty;x_1)\cup(x_2;+\infty)
 - если старший коэффициент меньше 0: x\in (x_3;x_4)
Вывод: необходимо рассмотреть случай с положительным старшим коэффициентом: a-1\ \textgreater \ 0, тогда a\ \textgreater \ 1
Решаем неравенство. Приравниваем левую часть к нулю:
(a-1)x^2-2x-a=0
\\\
D_1=(-1)^2-(a-1)\cdot(-a)=a^2-a+1
Получившийся дискриминант всегда больше 0, т.к. a^2-a+1=a^2-2\cdot \frac{1}{2} + \frac{1}{4} - \frac{1}{4} +1=(a- \frac{1}{2} )^2+ \frac{3}{4}\ \textgreater \ 0

x= \frac{1\pm \sqrt{a^2-a+1} }{a-1} 
\\\
\Rightarrow x\in(-\infty; \frac{1-\sqrt{a^2-a+1} }{a-1} )\cup( \frac{1+\sqrt{a^2-a+1} }{a-1} ;+\infty)
Чтобы получившийся ответ включал интервал х>3, необходимо потребовать выполнение следующего условия:
\frac{1+\sqrt{a^2-a+1} }{a-1} \leq 3
\\\
 \frac{1+\sqrt{a^2-a+1} -3(a-1)}{a-1} \leq 0
\\\
 \frac{4-3a+\sqrt{a^2-a+1} }{a-1} \leq 0
Так как в рассматриваемом случае a-1\ \textgreater \ 0, то можно перейти к следующему неравенству:
4-3a+\sqrt{a^2-a+1} \leq 0
\\\
\sqrt{a^2-a+1} \leq 3a-4
\\\
\begin{cases} a^2-a+1 \leq (3a-4)^2 \\ 3a-4\ \textgreater \ 0 \right \end{cases}
\\\
\begin{cases} a^2-a+1 \leq 9a^2-24a+16 \\ 3a\ \textgreater \ 4 \right \end{cases}
\\\
\begin{cases} 8a^2-23a+15 \geq 0 \\ a\ \textgreater \ \frac{4}{3} \right \end{cases}
\\\
\begin{cases} a\in(-\infty;1]\cup[ \frac{15}{8} ;+\infty) \\ a\ \textgreater \ \frac{4}{3} \right \end{cases}
Итоговое решение с учетом рассматриваемого ограничения a-1\ \textgreater \ 0: a\in[ \frac{15}{8} ;+\infty)
Искомое минимальное целое значение a_{min; \in Z}=2
ответ: 2
4,7(51 оценок)
Ответ:
5x² + 12xy + 9y² + 6x + 34

9y² + 12xy практически создают квадрат суммы, дополним это выражение:
9y² + 12xy + 4x² = (3y + 2x)², заметим, что это выражение есть целое число в квадрате.

5x² + 12xy + 9y² + 6x + 34 = x² + (4x² + 12xy + 9y²) + 6x + 34 = (3y + 2x)² + x² + 6x + 34

x² + 6x также дополняем до полного квадрата:
x² + 6x + 9 = (x + 3)²

(3y + 2x)² + x² + 6x + 34 = (3y + 2x)² + x² + 6x + 9 + 25 = (3y + 2x)² + (x + 3)² + 25

25 = 5² (целое число в квадрате)

(3y + 2x)² + (x + 3)² + 25 = (3y + 2x)² + (x + 3)² + 5²

Итак, получившееся выражение однозначно при любых целых x и y можно представить в виде суммы квадратов трёх натуральных чисел.
4,7(53 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ