Получаем 4 неравенства: 1) |x|>0 |x-1|>0 (x-2)(x-3)<=0; x1=2; x2=3; используя метод интервалов находим: x=[2;3] 2) |x|<0 |x-1|>0 (-x-2)(x-3)<=0; x1=-2; x2=3 используем тот же метод: x=(-беск;-2] и [3;+беск) 3) |x|>0 |x-1|<0 (x-2)(-x-1)<=0; x1=2; x2=-1; методом интервалов находим: x=(-беск;-1] и [2;+беск) 4) |x|<0 |x-1|<0 (-x-2)(-x-1)<=0; x1=-2; x2=-1 используем метод интервалов: x=[-2;-1] теперь обьеденим эти множетва и получим: x=[-2;-1] и [2;3] ответ: x принадлежит [-2;-1] и [2;3]
Всего существует 10 цифр : 0,1,2,3,4,5,6,7,8,9 Две цифры 1 и 2 - "заняты". Остаётся ровно 8 цифр (10-2=8).
Начинаем составлять трёхзначные цифры. Пусть место сотен займёт цифра 1 (один вариант), место десятков - цифра 2 (один вариант), тогда на место единиц можно будет поставить любую из восьми оставшихся цифр (8 вариант). Перемножаем полученные варианты получаем 1*1*8 = 8 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, аналогично: Пусть место сотен займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место десятков можно будет поставить любую из восьми оставшихся цифр (8 вариант). Перемножаем полученные варианты получаем 1*8*1= 8 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, Пусть место десятков займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место сотен можно будет поставить любую из семи оставшихся цифр - ноль нельзя ставить на место сотен (7 вариант). Перемножаем полученные варианты получаем 7*1*1 = 7 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*7=14 таких чисел.
Теперь осталось сложить все полученные результаты: 16+16+14=46 чисел
ответ: