а – пятёрки, х – четвёрки, 3х – тройки
а+х+3х
На 5 делятся числа, которые заканчиваются на 0 и 5, значит сумма троек и четвёрок равна числу, заканчивающемуся либо на 3, либо на 8.
х+3х = 4х – сумма троек и четвёрок
Числа, заканчивающиеся на 3, не делятся на 4, соответственно на его конце стоит 8.
Получается, сумма троек и четвёрок это число, меньше чем 53, заканчтвающееся на 8.
Из возможных вариантов:
8, 18, 28, 38, 48
Так же, мы знаем, что оно делится на 4.
Остаются:
8, 28, 48
Если это 8, то в сумме получится одна четвёрка и одна тройка, а так же лишняя единица, поэтому такой вариант не подходит.
Если это 28, то тройки должны составлять одну четверь числа. 28:4×1 = 7. 7 не делится на три, значит это не 28.
Остаётся 48, проверяем: 48:4×1 = 12. 12:3 = 4.
Количество троек: 4
48-12 = 36. 36:4 = 9
Количество четвёрок: 9
53-48 = 15. 15:5 = 3
Количество пятёрок: 3
ответ: 4 тройки, 9 четвёрок, 3 пятёрки
1) 5х^2 - 20=0
разложим левую часть на множители, получим:
5(х²-4) =0
воспользуемся формулой сокращённого умножения, получим:
5(х-2)(х+2) = 0 :5
(х-2)(х+2)=0
произведение равно нулю, когда один из множителей равен нулю, получаем:
х-2 = 0 или х+2 = 0
х=2 х = -2
2) х^2 + 12х=0
разложим на множители, вынеся общий множитель за скобки, получим:
х(х+12) = 0
х = 0 или х+12 = 0
х=0 или х= -12
3) 6х^2-18=0
6(х² - 3) = 0 :6
х² - 3 = 0
(х-√3)(х+√3) = 0
х=√3 или х= -3
4) 3х^2-24х=0
3х(х-8) = 0
3х = 0 или х-8 = 0
х=0 или х=8
5) 49х^2-9=0
воспользуемся формулой сокращённого умножения и разложим многочлен на множители, получим
(7х-3)(7х+3) = 0
7х-3 = 0 или 7х+3 = 0
х = 3/7 или х= -3/7
6) х^2+25=0
х² = -25
число в квадрате не может быть отрицательным
ответ: х∈{∅} - пустое множество
Решите уравнение:
1) (х-1)(х-2)+(х+4)+3=0
х²-2х-х+2+х+4+3=0
х²-2х+9=0
ответ: х∈{∅} - пустое множество
2) (2х-7)^2-7(7-2х)=0
(7-2x)² - 7(7-2x) = 0
(7-2x) (7-2x-7) = 0
(7-2x) * (-2x) = 0
7-2x =0 или -2x = 0
-2x= -7 x =0
x = 3.5 x=0
5x-x²=0
x(5-x)=0
x=0 x=5
фигура ограничена сверху параболой,а снизу осью ох