1). R = 12 см
l = 2πR·α / 360°
1. l = 2π·12·36° / 360° = 24π/10 = 2,4π см
2. l = 2π·12·72° / 360° = 4,8π см
3. l = 2π·12·45° / 360° = 3π см
4. l = 2π·12·15° / 360° = π см
2) l = 2πR R = l / (2π)
S = πR² = πl² / (4π²) = l² / (4π)
1. l = 6π см
S = 36π² / (4π) = 9π см
2. l = 4π см
S = 16π² / (4π) = 4π см²
3. l = 10π см
S = 100π² / (4π) = 25π см²
4. l = 8π см
S = 64π² / (4π) = 16π см²
3)
а) R = 12 см,
l = πR·α / 180°
α = l · 180° / (πR)
1. l = 2π см
α = 2π · 180° / (12π) = 30°
2. l = 3π см
α = 3π · 180° / (12π) = 45°
б) R = 10 см,
Sсект = πR²·α / 360°
α = Sсект·360° / (πR²)
1. Sсект = 5π см²
α = 5π·360° / (100π) = 18°
2. Sсект = 10π см²
α = 10π·360° / (100π) = 36°
ответ: h(t) = 9t - 2t², h - высота в м, t - время в секундах.
а) На какой высоте будет мяч через 2 секунды
t=2
h(2)=9*2-2*2²=10 метров
б) Через сколько секунд мяч будет находиться на высоте 10 м?
h=10
9t--2t²=10
2t²-9t+10=0
D=9²-4*2*10=1
t₁=(9-1)/4=2 с
t₂=(9+1)/4=2.5 с
Значит на высоте 10 м мяч буде находится через 2 с и через 2,5 с
в) Какой наибольшей высоты достиг мяч?
h(t) = 9t - 2t² парабола, ветви направлены вниз, значит точка максимума в вершине параболы:
t₀=-9/(-2*2)=2.25 c
h(2.25)=9*2.25-2*2.25²=20.25-10.125=10.125 м максимальная высота
Объяснение:надеюсь поймёшь
б) знак больше, так как а больше b, а также умножение есть на 12
в)знак меньше, так как получаются отрицательные числа, а так как а больше, то и число слева меньше (+ умножить на - равно -)
г) знак меньше, так как слева получится отрицательное число, а справа положительное