Выразим все через функции половинного аргумента (2-a)*2sin(x/2)cos(x/2) + (2a+1)(cos^2(x/2)-sin^2(x/2)) < 25sin^2(x/2)+25cos^2(x/2) (4-2a)sin(x/2)cos(x/2) + cos^{2}(x/2)(2a+1-25) + sin^{2}(x/2)(-2a-1-25) < 0 Делим все на cos^2(x/2) (4-2a)*tg(x/2) + (2a-24) + (-2a-26)*tg^2(x/2) < 0 Делим все на -2, при этом меняется знак неравенства (a+13)*tg^2(x/2) - (2-a)*tg(x/2) - (a-12) > 0 1) При а = -13 будет -(2 + 13) tg(x/2) - (-13 - 12) > 0 -15 tg(x/2) +25 > 0 15tg(x/2) < 25 tg(x/2) < 5/3 -pi/2 + pi*k < x/2 < arctg(5/3) + pi*k x1 ∈ (-pi + 2pi*k; 2arctg(5/3) + 2pi*k)
2) При a=/= -13 будет квадратное неравенство относительно tg(x/2) Замена tg(x/2) = t (a+13)*t^2 - (2-a)*t - (a-12) > 0 D = b^2 - 4ac = (2-a)^2 - 4(a+13)(-(a-12)) = 4 - 4a + a^2 + 4(a^2+a-156) = = 5a^2 - 4*156 + 4 = 5a^2 - 620 = 5(a^2 - 124) = 5(a - √124)(a + √124) При D = 0, то есть при a = -√124 и при а = √124 слева будет полный квадрат, который больше 0 при любых t, кроме t = tg(x/2) =/= -b/(2a) = (2 - a)/(2a + 26) x21 =/= 2arctg [(2 + √124)/(-2√124 + 26)] + 2pi*n x22 =/= 2arctg [(2 - √124)/(2√124 + 26)] + 2pi*n 2 - √124 < 0, а 26 - 2√124 > 0, поэтому x22 < x21 x2 ∈ (-pi + 2pi*n; x22) U (x22; x21) U (x21; pi + 2pi*n)
3) При D > 0, то есть при a < -√124 U a > √124 будет t1 = tg(x/2) = (2-a - √(5a^2 - 620) ) / (2a + 26) x31 = 2arctg [(2-a - √(5a^2 - 620) ) / (2a + 26)] + 2pi*m t2 = tg(x/2) = (2-a + √(5a^2 - 620) ) / (2a + 26) x32 = 2arctg [(2-a + √(5a^2 - 620) ) / (2a + 26)] + 2pi*m x3 ∈ (-pi + 2pi*m; x31) U (x32; pi + 2pi*m)
4) При D < 0, то есть при -√124 < a < √124 будет вот что. У уравнения слева корней нет, поэтому неравенство верно при любом t, то есть при всех x, при которых определен tg(x/2) x4 ∈ (-pi + 2pi*h; pi + 2pi*h)
ответ: При а = -13 x1 ∈ (-pi + 2pi*k; 2arctg(5/3) + 2pi*k) При a = -√124 и при а = √124 x21 =/= 2arctg [(2 + √124)/(-2√124 + 26)] + 2pi*n x22 =/= 2arctg [(2 - √124)/(2√124 + 26)] + 2pi*n x2 ∈ (-pi + 2pi*n; x22) U (x22; x21) U (x21; pi + 2pi*n) При a < -13 U -13 < a < -√124 U a > √124 x31 = 2arctg [(2-a - √(5a^2 - 620) ) / (2a + 26)] + 2pi*m x32 = 2arctg [(2-a + √(5a^2 - 620) ) / (2a + 26)] + 2pi*m x3 ∈ (-pi + 2pi*m; x31) U (x32; pi + 2pi*m) При -√124 < a < √124 x4 ∈ (-pi + 2pi*h; pi + 2pi*h)
Длину дистанции обозначим S м. Скорость Маши v(M) = S/35 м/мин Скорость Коли v(K) = S/28 м/мин Их скорости относятся друг к другу v(K):v(M) = 35:28 = 5:4 Если бы они начали одновременно, то Коля пробежал бы 5/9 пути, а Маша 4/9 пути, т.е. часть 0,8 от пути Коли. А на самом деле Маша пробежала 0,75 от пути Коли. Коля пробежал x м, а Маша на 1/4 меньше Коли, т.е. 0,75x м. А вместе они пробежали S = x + 0,75x = 1,75x = 7x/4 x = 4/7*S - путь Коли; 0,75x = 3/7*S - путь Маши. 3/7 = 27/63 < 4/9 = 28/63, значит Маша пробежала меньше, чем могла бы, если бы они начали одновременно. Значит, Коля начал раньше. Пусть Коля начал раньше на а мин. Значит, когда Маша начала, он уже пробежал а/35 часть пути. Осталось (35-a)/35 часть. Коля пробежал 5/9 от этой части. Это будет (35-a)/35*5/9 = 5(35-a)/315 - пробежал Коля от старта Маши до встречи. А всё вместе он пробежал 4/7 пути. a/35 + 5(35-a)/315 = 4/7 Умножаем всё на 315 = 35*9 = 45*7 9a + 175 - 5a = 4*45 = 180 4a = 5 a = 5/4 Ближе всего это к 1 мин. Видимо, правильный ответ: Г) Коля на 1 мин раньше.
a-b=корень7
a*b=4.5
a=корень7+b
подставим
(корень7+b)b=4.5
b^2+bc7-4.5=0
D=25
я хаменю корень из 7 на с, так удобнее
b1=(-c+5)/2 a1=(c+5)/2 a+b=5
b2=(-c-5)/2 a2=(-3c-5)/2 a+b=-2c-5