М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
НИК211111
НИК211111
10.01.2023 13:56 •  Алгебра

Нарчитите угол в а с и отметьти по одной точке внутри угла вне угла и на сторонах угла

👇
Ответ:
стас488
стас488
10.01.2023
Тут все предельно просто,угол ВАС и точки :).
Нарчитите угол в а с и отметьти по одной точке внутри угла вне угла и на сторонах угла
4,8(69 оценок)
Открыть все ответы
Ответ:
tsukhanova65
tsukhanova65
10.01.2023

(см. объяснение)

Объяснение:

\left(5+\dfrac{3}{\sin^2x}\right)\left(2-\sin^6x\right)=7+\cos2y

Наименьшее значение, которое может принимать левая часть рано 8.

Наибольшее значение, которое может принимать правая часть равно 8.

Значит исходное равенство становится верным, если имеем 8=8.

Тогда перейдем к системе уравнений:

\left\{\begin{array}{c}\left(5+\dfrac{3}{\sin^2x}\right)\left(2-\sin^6x\right)=8\\7+\cos2y=8\end{array}\right;

Понятно, что вторая ее строчка решается несложно:

7+\cos2y=8\\\cos2y=1\\y=k\pi,\;k\in \mathbb{Z}

Поработаем теперь с первой:

\left(5+\dfrac{3}{\sin^2x}\right)\left(2-\sin^6x\right)=8

Введем замену вида t=\sin^2x,\;0\le t\le 1.

Тогда уравнение выше можно переписать:

5t^4+3t^3-2t-6=0\\(t-1)(5t^3+8t^2+8t+6)=0

Один из корней очевиден и равен t=1.

Понятно, что при t\ge0 уравнение 5t^3+8t^2+8t+6=0 не имеет корней.

Выполним теперь обратную замену:

\sin^2x=1\\\cos2x=-1\\\\x=\dfrac{\pi}{2}+n\pi,\;n\in\mathbb{Z}

Тогда ответом будет:

\left\{\begin{array}{c}x=\dfrac{\pi}{2}+n\pi,\;n\in\mathbb{Z}\\y=k\pi,\;k\in\mathbb{Z}\end{array}\right;

Задание выполнено!

4,5(66 оценок)
Ответ:
Пакмен007
Пакмен007
10.01.2023

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ