Объяснение:
Как найти область определения функции?
Примеры решений
Если где-то нет чего-то, значит, где-то что-то есть
Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – Область определения функции. Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций, где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.
Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на (множестве всех действительных чисел). За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.
Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной, навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.
Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс», для которых существуют значения «игреков». Рассмотрим условный пример:
Область определения функции
Область определения данной функции представляет собой объединение промежутков:
(для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».
Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения и графика там нет.
Да, кстати, если что-нибудь не понятно из терминологии и/или содержания первых абзацев, таки лучше вернуться к статьям Множества и действия над ними, Графики и свойства элементарных функций.
Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:
Область определения функции, в которой есть дробь
Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции.
Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби
Для a ∈ (-∞; -1) корней не существует
Для a ∈ [-1; -0.5): x = 2a + 3
Для a = -0.5: x = 2 (как подстановка a в корень (2a + 3) )
Для a ∈ (-0.5, 1): x = 2a + 3
Для a ∈ [1; 3): x₁ = 2a + 3; x₂ = a - 1
Для a = 3: x = 2 (как подстановка a в корень (a - 1) )
Для a ∈ (3; +∞): x₁ = 2a + 3; x₂ = a - 1
Объяснение:
Можно заметить, что знаменатель уравнения представляет собой полный квадрат суммы. Ее можно свернуть в . Таким образом, мы сразу же можем сказать, что в итоге решения уравнения нужно исключить корни, равные 3а, так как в этом случае знаменатель обращается в нуль.
Чтобы дробь была равна нулю, необходимо, чтобы и числитель был равен нулю.
Найдем дискриминант этого уравнения
Дискриминант данного уравнения всегда неотрицательное число, поэтому как минимум одно решение будет всегда
Отсюда находим x:
Дополнительно определим, какие параметры a вполне допустимы:
Если a = 3, то корень единственный x = x₂ = a - 1 = 2
И если a = -0.5, то корень x = x₁ = 2a + 3 = 2
UPD:
Как верно заметили в комментариях, упустил одну деталь, и она связана с особенностями квадратного корня. Значение квадратного корня всегда неотрицательное число, поэтому справедливо неравенство:
Это значит, что корни, которые были получены через дискриминант, должны удовлетворять:
Это значит, что параметр a должен быть не меньше чем 2, чтобы существовало два корня
С другой стороны, если оно будет меньше 2, это еще не говорит о том, что и корней не будет. На отрезке [-1; 2) будет строго один корень, который равен 2a + 3. Других вариантов нет.
2)6,2,0.9
3)76,87,
4)2,3,5,7,11
5)Все целые числа (кроме 0 и 1) имеют минимум два делителя: 1 и самого себя.
6)2,4,6,8,10
7)1,3,5,7,9,11
8)1,2,3,4,5,6
9)1/2,8/9
10)1,6,9,2,3,
11)-4,-2,5,-9