М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Max2934
Max2934
03.02.2023 22:03 •  Алгебра

Надо примеры вот этих чисел: натуральные- однозначные- многозначные- простые- составные- чётные- нечётные- целые- дробные- положительные- отрицательные- sos! нужно! !

👇
Ответ:
380661146235
380661146235
03.02.2023
1)1, 2, 3, 4, 5, 6, 7, 8, 9
2)6,2,0.9
3)76,87,
4)2,3,5,7,11
5)Все целые числа (кроме 0 и 1) имеют минимум два делителя: 1 и самого себя.
6)2,4,6,8,10
7)1,3,5,7,9,11
8)1,2,3,4,5,6
9)1/2,8/9
10)1,6,9,2,3,
11)-4,-2,5,-9
4,7(72 оценок)
Ответ:
fadrakla
fadrakla
03.02.2023
Натуральные числа-(1,2,3,4,5,6,7,8,9,10 и т.д.Натуральными не могут быть дробные числа)
Однозначные числа-(все от 1 до 9)
Многозначные числа-(все,которые имеют больше одной цифры,например 100,10,1000)
Простые числа-(имеющие только два делителя,1 и само себя.Примеры:2,3,5,7,11,13,17,19,43)
Составные числа-(Имеющие больше делителей,например 4,6,8,10,72)
Чётные числа-(Все которые делятся на 2,например 2,4,6,8,10,12,14,16,18,20 и так далее)
Нечётные числа-(Все,что не делятся на 2,например 3,5,7,9,11,13,15,17,19 и так далее)
Целые числа-(2,4,5,7,3,10)
Дробные числа-(3,6 ; 7,5 ; 4,09)
Положительные числа-(Все,что больше нуля.Например,5,8,4,7)
Отрицательные числа-(Все,что меньше нуля.А это -10;-2;-13)
4,4(67 оценок)
Открыть все ответы
Ответ:
linniklera
linniklera
03.02.2023

Объяснение:

Как найти область определения функции?

Примеры решений

Если где-то нет чего-то, значит, где-то что-то есть

Продолжаем изучение раздела «Функции и графики», и следующая станция нашего путешествия – Область определения функции. Активное обсуждение данного понятия началось в статье о множествах и продолжилось на первом уроке о графиках функций, где я рассмотрел элементарные функции, и, в частности, их области определения. Поэтому чайникам рекомендую начать с азов темы, поскольку я не буду вновь останавливаться на некоторых базовых моментах.

Предполагается, читатель знает область определения следующих функций: линейной, квадратичной, кубической функции, многочленов, экспоненты, синуса, косинуса. Они определены на (множестве всех действительных чисел). За тангенсы, арксинусы, так и быть, прощаю =) – более редкие графики запоминаются далеко не сразу.

Область определения – вроде бы вещь простая, и возникает закономерный вопрос, о чём же будет статья? На данном уроке я рассмотрю распространённые задачи на нахождение области определения функции. Кроме того, мы повторим неравенства с одной переменной, навыки решения которых потребуются и в других задачах высшей математики. Материал, к слову, весь школьный, поэтому будет полезен не только студентам, но и учащимся. Информация, конечно, не претендует на энциклопедичность, но зато здесь не надуманные «мёртвые» примеры, а жареные каштаны, которые взяты из настоящих практических работ.

Начнём с экспресс-вруба в тему. Коротко о главном: речь идёт о функции одной переменной . Её область определения – это множество значений «икс», для которых существуют значения «игреков». Рассмотрим условный пример:

Область определения функции

Область определения данной функции представляет собой объединение промежутков:

(для тех, кто позабыл: – значок объединения). Иными словами, если взять любое значение «икс» из интервала , или из , или из , то для каждого такого «икс» будет существовать значение «игрек».

Грубо говоря, где область определения – там есть график функции. А вот полуинтервал и точка «цэ» не входят в область определения и графика там нет.

Да, кстати, если что-нибудь не понятно из терминологии и/или содержания первых абзацев, таки лучше вернуться к статьям Множества и действия над ними, Графики и свойства элементарных функций.

Как найти область определения функции? Многие помнят детскую считалку: «камень, ножницы, бумага», и в данном случае её можно смело перефразировать: «корень, дробь и логарифм». Таким образом, если вам на жизненном пути встречается дробь, корень или логарифм, то следует сразу же очень и очень насторожиться! Намного реже встречаются тангенс, котангенс, арксинус, арккосинус, и о них мы тоже поговорим. Но сначала зарисовки из жизни муравьёв:

Область определения функции, в которой есть дробь

Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции.

Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби

4,6(1 оценок)
Ответ:
xastek
xastek
03.02.2023

Для a ∈ (-∞; -1) корней не существует

Для a ∈ [-1; -0.5): x = 2a + 3

Для a = -0.5: x = 2 (как подстановка a в корень (2a + 3) )

Для a ∈ (-0.5, 1): x = 2a + 3

Для a ∈ [1; 3): x₁ = 2a + 3; x₂ = a - 1

Для a = 3: x = 2 (как подстановка a в корень (a - 1) )

Для a ∈ (3; +∞): x₁ = 2a + 3; x₂ = a - 1

Объяснение:

Можно заметить, что знаменатель уравнения представляет собой полный квадрат суммы. Ее можно свернуть в (x-3a)^2. Таким образом, мы сразу же можем сказать, что в итоге решения уравнения нужно исключить корни, равные 3а, так как в этом случае знаменатель обращается в нуль.

Чтобы дробь была равна нулю, необходимо, чтобы и числитель был равен нулю.

\sqrt{3ax-2a^2-a+4}-x+1=0\\\sqrt{3ax-2a^2-a+4}= x-1\\3ax - 2a^2-a+4 = x^2 - 2x + 1\\x^2 - 2x - 3ax + 2a^2 + a - 3 = 0\\x^2 - (2 + 3a)x + (2a^2 + a - 3) = 0

Найдем дискриминант этого уравнения

x^2 - (2 + 3a)x + (2a^2 + a - 3) = 0\\D = (2 + 3a)^2 - 4(2a^2+a-3)\\D = 9a^2 + 12a + 4 - 8a^2 - 4a + 12 = a^2 + 8a + 16 = (a + 4)^2

Дискриминант данного уравнения всегда неотрицательное число, поэтому как минимум одно решение будет всегда

Отсюда находим x:

x^2 - (2 + 3a)x + (2a^2 + a - 3) = 0\\D = (a + 4)^2\\x_1 = \frac{(2+3a)+a+4}{2} = \frac{4a+6}{2} = 2a+3\\x_2 = \frac{(2+3a) - a - 4}{2} = \frac{2a - 2}{2} = a - 1

Дополнительно определим, какие параметры a вполне допустимы:

2a + 3 \neq 3a\\a \neq 3

a - 1 \neq 3a\\-2a \neq 1\\a \neq 0.5

Если a = 3, то корень единственный x = x₂ = a - 1 = 2

И если a = -0.5, то корень x = x₁ = 2a + 3 = 2

UPD:

Как верно заметили в комментариях, упустил одну деталь, и она связана с особенностями квадратного корня. Значение квадратного корня всегда неотрицательное число, поэтому справедливо неравенство:

x - 1 \geq 0\\x \geq 1

Это значит, что корни, которые были получены через дискриминант, должны удовлетворять:

\left \{ {{2a+3 \geq 1} \atop {a - 1 \geq 1}} \right. \\\left \{ {{2a \geq -2} \atop {a \geq 2}} \right.\\\left \{ {{a \geq -1} \atop {a \geq 1}} \right.

Это значит, что параметр a должен быть не меньше чем 2, чтобы существовало два корня

С другой стороны, если оно будет меньше 2, это еще не говорит о том, что и корней не будет. На отрезке [-1; 2) будет строго один корень, который равен 2a + 3. Других вариантов нет.

4,8(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ